

Secure sharing of FPGAs in the Cloud: New Challenges at the Technology Level

Mehdi B. Tahoori

INSTITUT FÜR TECHNISCHE INFORMATIK – CHAIR OF DEPENDABLE NANO COMPUTING

www.kit.edu

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Physical Fault and Side-Channel Attacks

Motivation

Heterogeneous computing ↑

FPGAs in the Cloud: Amazon, Alibaba, Microsoft, Huawei, ...

Highly-integrated SoCs + FPGAs

≻Trends

Shared FPGA → "Multi-Tenant FPGA"

- Remote accessible FPGA
- > New security threats?
 - Isolation Design Flows protect on digital level
 - New security threats on electrical level

Figure 3: Floorplan of the XCU250 Device

Who cares about security of FPGAs?

• Everyone will \rightarrow FPGAs important for efficiency scaling!

Challenges: The End of Moore's Law and Scaling

40 Years of Processor Performance

The Third Wave: Domain Specific Architectures on Adaptable HW

[Xilinx' Victor Peng @ Hot Chips 2018]

FPGAs already available in the Cloud

Catapult V2 architecture

Multi-Tenant FPGAs

Mainline Linux Kernel Support for partial reconfiguration exists

Many publications show efficiency benefits of multi-tenancy

Datacenter FPGAs with multiple accelerators considered

[Xilinx Datasheet XCU250]

Multi-Tenant FPGAs coming to the Cloud

Stack for Application Acceleration including ML

Power Analysis can become a threat!

Outline

Background and Attack Model

Attacks

Power Analysis Side Channel Attacks inside FPGAs

- Fault Attacks inside FPGAs
- Summary & Impact

Countermeasures

Conclusion & Perspectives

Outline

Background and Attack Model

Attacks

Countermeasures

Conclusion & Perspectives

Overview: Physical Attacks on Integrated Circuits

Traditionally with physical access to the chip

(Semi-)Invasive Attacks

- (Semi-)Destructive
- Not here

Non-Invasive Attacks

No manipulation of chip itself

Active

- Often: Clock / Voltage manipulation
- "Fault Attacks"

Passive

- Measuring Power / Voltage / ...
- "Side Channel Attacks"

Power Side-Channel Attacks

Kocher et al. '99, Brier et al. '04

Extract secret key from power measurements

- Example: Correlation Power Analysis (CPA) statistically correlates:
 - I. Measure power
 - II. Model of key-dependent power consumption (e.g. per byte)
 - Correct secret key correlates most

Result for 10 Million traces

Dependent on amount of traces...

Fault Attacks

Fault Attacks

- Cause errors in a system
- Targeted manipulation (possibly undetected)
- Denial of Service
 - i.e. massive voltage drop
- Differential Fault Analysis (DFA) [Biha97]
 - Cause minor changes in encryption algorithm
 - Similarities to CPA: Collect data and try to deduce secret key
- Circumventing Secure Boot or other Security Checks
 - Causing instruction skips

Background – Power Distribution Networks (PDNs)

Board-level PDN: From Voltage regulator ...

...until individual Transistors

Background – Power Distribution Networks (PDNs)

- Complex network: Resistors (R), Capacitors (C), Inductors (L)
 - Some by design, some unwanted, parasitic
- Circuit activity → changes i(t) → voltage noise $V_{noise} \propto L \frac{di(t)}{dt} + i(t)R$ ■ Vice versa: Voltage → Transistor speed $\tau_{delay} \propto \frac{1}{v}$

Sensors in Digital FPGA logic

Zick et al. '10,'13

clk[•]

- Voltage-dependent transistor delay
- Ring Oscillator based sensor
 - Slow sampling
- Sensor based on Delay Line
 - No combinational loop needed
 - Faster sampling
 - Sensitivity was not explored

Voltage-level estimate

Outline

Background and Attack Model

Attacks

Power Analysis Side Channel Attacks inside FPGAs

Fault Attacks inside FPGAs

Countermeasures

Experimental Setup

SAKURA-G

- AES @ 24 MHz
 - Minimal FPGA resource use:
 - 265 FF (0.3%) / 862 LUTs (0.9%)

Sensor @ 24, 48, 72, 96 MHz

Experimental Setup – Floorplans

Distant Sensor

"Multi-Tenant"

Outline

Background & Attack Model

Attacks

Power Analysis Side Channel Attacks inside FPGAs

Fault Attacks inside FPGAs

Countermeasures

Conclusion & Perspectives

Causing a Voltage Drop: Ring Oscilators (ROs)

- Ring oscillators (ROs) require high current/power = i(t)
- Suddenly enabling them causes high Voltage-Drop —
- > Allows Fault Injection & Denial of Service (DoS)

Denial-of-Service

Frequency-sweep on f_{RO-t} crashes multiple systems

- Some can only be recovered by power cycling of the full board
 - Especially problematic for PCIe accelerators
 - KC705, ML605, VCU108
 - Standalone Boards
 - Zedboard Zynq-ZC7020, Lattice iCE40-HX8K, Intel DE1-SoC
- Details analyzed on VCU108, see next slide

Faults and Crash Probability, Xilinx VCU108

Differential Fault Attack – Scenario

Differential Fault Attack – Analysis

- Recover AES secret key
 - Use pairs of faulty / fault-free ciphertexts Piret et al. CHES 2003
- Original scheme: Single-byte faults before 8th round
 - All output bytes faulty
- Fault injection before 9th round
 - > Allows to **verify** a successful injection

Fault Injection and Analysis

- Attacker issues encryption request to get correct ciphertext
- Attacker issues encryption requests while activating RO grid
- Fault injection is calibrated until desired faults appear
- Calibration is done only once for a specific board

Experimental Setup(s)

- Intel DE1-SoC Board
 - Cyclone V FPGA-SoC
 - ARM Cortex A9 Dual Core
- Attacker and Victim Software on ARM
- Attacker and Victim IP Cores on FPGA
 - Design meets all timing constraints
- On Intel DE0-Nano-SoC:
 - Feasible if design does not meet worst-case timing models

Results

Fault injection rate

- Tested on three boards
- Details shown for one

Recovered AES keys

Outline

Background & Attack Model

Attacks

Countermeasures

Conclusion & Perspectives

Summary of Results

Remote Power Analysis & Fault Attacks are possible

Even when existing secure design flow is followed

Results extended to other FPGA boards & vendors

Lattice HX8K, ECP5, .. Xilinx Zynq ZC7020, ..VCU108, .. Intel Cyclone V, ..

More boards can be attacked.. (list until Dec. 2019)

	Attack successful?				
Board	Voltage Drop-based Denial of Service	Voltage Drop-based Timing Fault Injection	Key Recovery by Side-Channel		
Intel Terasic DE0-Nano-SoC	_	Yes	_		
Intel Terasic DE1-SoC	Yes	Yes	_		
Intel Terasic DE2-115	_	_	Yes, [8] ¹		
Intel Terasic DE4	_	Yes	_		
Lattice ECP5 5G Evaluation Board	_	_	Yes		
Lattice iCE40-HX8K Breakout Board	Yes	Yes	Yes		
Xilinx Artix-7 Basys-3	_	_	Yes		
Xilinx Kintex-7 KC705	Yes	_ 5	_		
Xilinx Pynq Zynq-ZC7020	Yes ²	_ 5	Yes		
Xilinx Spartan-6 SAKURA-G	_	_	Yes^4		
Xilinx Ultrascale VCU108	Yes	Yes	_		
Xilinx Virtex-6 ML605	Yes	_ 5	_		
Xilinx Virtex-7 VC707	_	Yes, [9]	-		
Xilinx Zedboard Zynq-ZC7020	Yes ²	_ 5	Yes, [5] ³		

¹ Information leaks through cross-coupling of adjacent wires. This is less of a threat, since coupling is prevented if interconnect matrices are not shared between multiple designs [8], which is also recommended by standard secure design flow practices [2].

² It affects the whole SoC including the integrated ARM Cortex-A9 Dual-Core.

³ Sufficient leakage for key recovery was also shown from CPU to FPGA in the same SoC

⁴ In [10] it was additionally shown to work from one FPGA in the system (connected to the same power supply) to another, on board-level.

⁵ A simple experiment was conducted, but the devices crashed before timing violations occured – it might still be possible with more effort.

Outline

Background & Attack Model

Attacks

Countermeasures

Conclusion & Perspectives

Countermeasures tailored to FPGAs

Offline Method: Bitstream checking

- FPGA "Anti-Virus"
- Detects malicious FPGA configuration before it gets loaded to the FPGA:
 - Structures usable for Power Analysis
 - Structures usable for Fault Attacks
- Runtime Method: "Active Fences"
 - Hiding scheme tailored to FPGA on-chip power analysis
 - Reduces signal-to-noise ratio with on-chip spatial considerations in mind
- Runtime Method: "LoopBreaker"
 - Prevents faults by reconfiguring interconnect as fast as possible

Offline Approach: Bitstream Checking

- Checking designs (bitstream) before loading to FPGA
- Supervisor checks bitstreams for malicious "Signatures"
 - May require bitstream reverse engineering
- Fault Attack Signature: causing too much voltage droop
 - Too many combinational cycles with inputs
 - Or: Any high fanout-nets
- Power Analysis Signature: possible delay sensors
 - Has timing violations according to timing analysis
 - Has at least one combinational cycle with output

Bitstream Checking Flow

Results Bitstream Checking 1/2

Evaluation on known attack designs

- Reference01 Delay Line Sensor
- Reference02 Ring Oscillator Sensor
- Reference03 Fault Injection with Ring Oscillators

Design	#LEs	Comb.	Data-to-	Highest	Timing	Runtime	Runtime
Name		Cycles?	Clock?	Fanout?	violations?	(structural)	(timing)
reference01	6075	\checkmark	×	3000	\checkmark	29.32s	152.31s
reference02	6810	\checkmark	×	6500	×	20.32s	169.67s
reference03	4077	×	×	3000	\checkmark	25.09s	127.05s

Results Bitstream Checking 2/2

- Evaluation on benign designs
- No false positives on these

Design Name	#LEs	Comb. Cycles?	Data-to- Clock?	Highest Fanout?	Timing violations?	Runtime (structural)	Runtime (timing)
s27	19	×	×	3	×	4.54s	17.34s
s208_1	73	×	×	8	×	4.60s	17.66s
s298	141	×	×	14	×	4.63s	18.33s
s344	132	×	×	18	×	6.21s	18.56s
s349	123	×	×	18	×	6.24s	18.51s
s382	159	×	×	22	×	6.20s	19.11s
s386	167	×	×	13	×	4.57s	19.33s
s400	163	×	×	22	×	6.16s	18.85s
s420_1	187	×	×	16	×	4.59s	19.21s
s444	162	×	×	22	×	6.19s	19.61s
s510	256	×	×	26	×	4.76s	20.52s
s526	237	×	×	22	×	6.22s	18.51s
s526n	228	×	×	22	×	6.15s	18.27s
				•••			
<i>b08</i>	227	×	×	21	×	6.35s	18.74s
b09	260	×	×	32	×	6.27s	18.35s
b10	311	×	×	24	×	6.42s	18.64s
b11	805	×	×	35	×	6.51s	20.02s
b12	2017	×	×	119	×	7.13s	24.52s
b13	402	×	×	50	×	6.36s	19.88s
sha	1833	×	×	969	×	15.29s	69.13s
diffeq2	4049	×	×	97	×	19.78s	111.06s
vexriscv	2587	×	×	241	×	23.86s	87.49s
leon3	29304	×	×	1838	-	19.28s	-

Active Fences

- Generic to apply and not affect tenant regions \rightarrow "Fence"
- Dynamic hiding that adapts at runtime \rightarrow Sense Leakage
- Non-intrusive to algorithm or implementation \rightarrow Generic ROs

41

- Malicious tenants can be detected with voltage drop sensors
- To prevent them, their activity needs to be stopped, e.g.:
- 1. Stopping the Clock \rightarrow Not enough! Self-clocking is possible
- 2. Partial reconfiguration \rightarrow Remove an entire region \rightarrow Too slow
- LoopBreaker only reconfigures what it needs to...

LoopBreaker 2/2

LoopBreaker concentrates on interconnect

Stops ALL activity

 \geq 100x faster reconfig.

RO Faults - RO Crashes - Latch Faults - Latch Crashes - Mux Faults

Summary Countermeasures

Offline approach: Bitstream checking

- Detects malicious configurations on supervisor level
- Potential remaining issue:
 - Legal corner case in operation that produces high voltage drop \rightarrow fault
 - Timing violations need to be entirely defined on supervisor level
- Runtime method: "Active Fences"
 - Increase required traces for CPA by 166x, with 1.5/2x Power/Area overhead
 - Non-invasive to user design, works as a wrapper, generic to apply

Runtime "LoopBreaker"

Disables interconnects faster, but might not be fast enough for all attacks

Outline

Background & Attack Model

Attacks

Countermeasures

Conclusion & Perspectives

Escalating On-Chip Power Analysis ...

FPGA-SoC

Printed Circuit Board (Shared Power Supply)

Mixed-Signal SoC

Recent Related Work

Many have appeared in the last years, a few selected ones are:

- Bitstream checkers
 - Including analysis of various fault injection methods [La et al. TRETS'20]
- Attacks in Cloud Platforms
 - Proof that the respective malicious bitstreams can actually be loaded
 - SCA in FPGA in Amazon EC2, [Glamocanin et al. DATE 2020]
 - DoS in FPGA on Amazon EC2, [La et al. CHES 2021]
 - > Amazon implemented some, but not sufficient, countermeasures

Hardware Oriented Security and Trust (HOST) 2019

- Low-Cost Lattice HX8K Board
 - Power Analysis SCA
 - Faults for DoS
 - Faults for Differential Fault Analysis
- Interactive GUI
- Open-source, available:
 - cdnc.itec.kit.edu/SCA-DFA-Demo.php

Allows hardware security education, without expensive equipment!

➤ Base for this Tutorial!

Conclusion

First successful remote power analysis attack First remote fault attack (for DoS) First countermeasures for those attacks

Motivates further research:

- General security aspects of Power Distribution Networks (PDNs)
- Analyzing PDN-based attacks in other devices
- New security concepts for Multi-Tenant FPGAs

Thanks for your Attention! Questions?

Our Publications until 2019, On-Chip Voltage Fluctuations

- J. Krautter, D. R. E. Gnad, F. Schellenberg, A. Moradi, and M. B. Tahoori, "Active Fences against Voltage-based Side Channels in Multi-Tenant FPGAs", in International Conference on Computer-Aided Design (ICCAD), 2019, USA.
- J. Krautter, D. R. E. Gnad, M. B. Tahoori, "Mitigating Electrical-Level Attacks towards Secure Multi-Tenant FPGAs in the Cloud", in ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2019.
- D. R. E. Gnad, J. Krautter, M. B. Tahoori, "Leaky Noise: New Side-Channel Attack Vectors in Mixed-Signal IoT Devices", in IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2019.
- D. R. E. Gnad, S. Rapp, J. Krautter, M. B. Tahoori, "Checking for Electrical Level Security Threats in Bitstreams for Multi-Tenant FPGAs", International Conference on Field-Programmable Technology (FPT), 2018, Japan.
- F. Schellenberg, D. R. E. Gnad, A. Moradi, M. B. Tahoori, "Remote Inter-Chip Power Analysis Side-Channel Attacks at Board-Level", in International Conference on Computer-Aided Design (ICCAD), 2018, USA.
- J. Krautter, D. R. E. Gnad, M. B. Tahoori, "FPGAhammer: Remote Voltage Fault Attacks on Shared FPGAs, suitable for DFA on AES", in IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2018. (CSAW'18 Finalist)
- D. R. E. Gnad, F. Oboril, S. Kiamehr, M. B. Tahoori, "An Experimental Evaluation and Analysis of Transient Voltage Fluctuations in FPGAs", in IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 2018.
- F. Schellenberg, D. R. E. Gnad, A. Moradi, M. B. Tahoori, "An Inside Job: Remote Power Analysis Attacks on FPGAs", in proceedings of Design, Automation & Test in Europe (DATE), 2018, Germany. (Best Paper Candidate)
- D. R. E. Gnad, F. Oboril, M. B. Tahoori, "Voltage Drop-based Fault Attacks on FPGAs using Valid Bitstreams", International Conference on Field-Programmable Logic and Applications (FPL), 2017, Belgium. (Best Paper Award)
- D. R. E. Gnad, F. Oboril, S. Kiamehr, M. B. Tahoori, "Analysis of Transient Voltage Fluctuations in FPGAs", International Conference on Field-Programmable Technology (FPT), 2016, China. (Best Paper Candidate)

Demos / Media / Presentations

- D. Gnad, S. Ritterbusch, "FPGA Seitenkanäle", Gespräch im Modellansatz Podcast, Folge 177, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2018.
- D. Gnad, "Seitenkanal-Angriffe innerhalb FPGA-Chips", Vortrag auf der GPN18, media.ccc.de, Chaos Computer Club e.V, May 2018, Karlsruhe, Germany. < https://media.ccc.de/c/gpn18 >
- D. Gnad, M. Tahoori, "Security threats in nanoscale FPGA fabric", Workshop on SecURity, REliAbiLity, test, prIvacy, Safety and Trust of Future Devices (SURREALIST), May/June 2018, Bremen, Germany.
- J. Krautter, D. R. E. Gnad, F. Schellenberg, A. Moradi, M. B. Tahoori, "Software-based Fault and Power Side-Channel Attacks inside Multi-Tenant FPGAs", Demo Session, IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 2019, USA. (Best Hardware Demo Award, Third Place)