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Abstract. Designing a robust white-box implementation against state-
of-the-art algebraic and differential computational analysis attacks is a
challenging problem. The study of white-box security was revamped by
recent advances involving grey box attacks. Since then, many authors
have struggled to protect implementations against such new attacks.
New designs as well as new security notions appeared, and white-box
research in general seems to have greatly benefited from such advances.
The current research aims at finding the best encodings and masking
schemes to resist tracing attacks. In this perspective we suggest a new
encoding scheme that can be applied to white-box designs. By using
a modified version of the Benaloh cryptosystem, our design introduces
semi-homomorphic properties to the encoding. To the best of our knowl-
edge, this is the first time such properties are applied to an encoding
design. This allows reducing the memory requirements and providing a
better resistance against tracing attacks. Our encoding is versatile and
can be adapted to different ciphers, and in most cases it provides perfor-
mance improvements with respect to the state-of-the-art.

Keywords: White-Box · AES · Homomorphic Cryptosystem · Benaloh Cryp-
tosystem.

1 Introduction

The mass adoption of connected devices, like smartphones, tablets or smart-
watches, implied a deep change in the industry. From basic cellular phones,
mobile devices evolved into indispensable microcomputers of everyday life. Our
smartphone collects our information, verifies our identity, secures our credit card
transactions, replaces our car keys, enables us to watch movies and series, and
can perform many other “useful” operations.

It is thus mandatory that such smart objects provide users with enough
security for the collected data. This turns out to be the role of trusted execution
environments (TEE) that solved the security problem by delegating the sensitive
tasks to an embedded secure element (eSE). However, smartphones are far from
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being standardized in all their aspects. For example the same OS version can
run on multiple platforms. These platforms may have different flavors of eSEs
or none at all. Thus, applications must adapt the security to the device at hand.
Far from being an easy task, providers must even protect the device from the
legitimate user itself, which in some cases may behave wickedly.

The white-box model takes on its full meaning in such an environment, where
the cryptographic implementation is exposed. The white-box model can be seen
as the opposite of the black box model, where the attacker has only access
to the inputs and the outputs. Indeed, the white-box model assumes that the
cryptographic primitive runs in an untrusted environment. In such a scenario
the attacker has full access to the device: he can access the binary code of the
application and observe or interact with the device’s execution, in order for
example to extract the encryption key from the implementation. It is thus very
difficult to provide efficient security solutions against such threats. Nonetheless,
due to the mass adoption of smart-devices, solutions are required by the industry
to mitigate the problem.

Besides, the market needs white-box solutions for DRMs, Pay-TV, secure
storage, etc., motivating researchers all over the world to keep working on it.
The competitive spirit of researchers, together with the market pressure, also
motivated the creation of international challenges, like the WhiBox contest [1,2],
where users are invited to submit white-box AES implementations, and each par-
ticipant can try to break others’ submissions. In these challenges, a white-box is
considered unbroken until its key is found or its functionality reversed. Points are
assigned to the participants who implement the longer lasting unbroken white-
box and to those breaking the strongest ones. For example, an interesting result
of the 2019 edition of the WhiBox competition [2] is that the best white-boxes
withstood attacks for more than one month. Thus, despite theoretically flawed,
the security offered by actual implementations can be sufficient for content which
value is limited to a short-term period (like for example a live football world cup).

One of the many techniques used in the contest of white-box is the use
of encodings [20], affine or non-linear functions applied to the input/output of
tables, and unknown by the attacker. These random encodings provide a map
from the clear world and the encoded world, and allow randomization of key-
dependent data. Such countermeasures are however expensive to deploy. The
designer often needs to find a tradeoff between security and complexity (as a
combination of memory requirements and running time).

The purpose of our work is thus to suggest an encoding principle that can
help to reduce such complexity rise, while maintaining the security at the state-
of-the-art. In particular, we suggest a novel way to create encodings that are both
cheap and safe. We show how to use a degraded semi-homomorphic encryption
scheme, based on the work of Benaloh [6] to build non-linear encodings that
provide better security against algebraic attacks as well as security against dif-
ferential computation analysis (DCA). Our encodings allow dropping the use of
tables for the most used operations in crytographic algorithms. Also, our propo-
sition provides better performances for most operations by exchanging lookup
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table accesses with CPU operations. We provide both a security evaluation of
our proposition together with an application to an AES-128 white-box. Based on
our suggested AES-128 white-box, we provide memory and performances com-
parisons against state-of-the-art implementations.

This paper is organized as follows. Section 2 is dedicated to the state-of-the-
art in white-box designs and attacks. Afterwards, Section 3 introduces our new
encoding scheme. In Section 4 we provide a security analysis of our suggested
white-box encoding. The complexity in terms of memory and time of our new de-
sign is evaluated in Section 5. Finally some suggestions for further developments
of our idea are provided in Section 6. Section 7 concludes this work.

2 State-of-the-Art

In 2002, two seminal papers from Chow et al. [19,20] introduced a new way to
implement cryptographic algorithms that provided some risk mitigation. Such
solutions to resist white-box attacks are known as “white-box cryptography”
(WBC). They paved the way for a new and very active research field for both
theoreticians and practitioners.

2.1 White-Box Designs

The work of Chow et al. [19,20] exposed the first white-box descriptions for
both DES and AES ciphers. Their design has been the white-box implementa-
tion reference since then. Chow et al. introduced the use of tables to perform
computations. Also, similar to the randomization technique of Kilian [31], by en-
coding each table with input/output functions unknown to the attacker, Chow et
al. provided an initial solution to the problem of obfuscating a program.

After the first white-box propositions were published, Link et al. suggested an
improved version of the DES white-box in [36], to better resist attacks. However,
several attacks that allowed to recover the key hidden in the DES white-box were
proposed by Wyseur et al. [47] and by Goubin et al. [27]. In parallel, the AES
white-box was broken using an algebraic attack by Billet et al. [7], which was
further refined and generalized by Michiels et al. [39]. In order to thwart such
attacks, other authors proposed further white-box designs of the AES-128, for
example Bringer et al. in [16] suggested an approach based on polynomials, but
their suggestion was broken by De Mulder et al. in [23]. In 2009, Xiao and Lai
proposed an improvement of Chow et al. AES white-box in [48], but again, their
proposal was broken by De Mulder et al. [22]. In 2010, Karroumi suggested in [30]
to use dual ciphers to protect the AES white-box. Unfortunately such a design
was also broken by Lepoint et al. [35].

Generally speaking, all propositions of AES and DES white-box designs have
been shown to be theoretically broken in the sense that the embedded key can
be extracted. For each proposition a theoretical attack was found, see for exam-
ple [7,35,39].
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In a parallel thread of work, researchers tried to clarify the security notions
related to the white-box context, thus works like those of Delerablée et al. [24],
Saxena et al. [44] and Bock et al. [12] appeared.

A further step in the understanding of the security of white box implementa-
tions was brought forward by the introduction, in 2015 and 2016, of two attacks
borrowed from the field of physical security. These attacks were used to break
AES white-box suggestions appeared meanwhile, like the work of Luo et al. [37]
and Lee et al. [32]. Such attacks were fault injection attacks, presented by Sanfe-
lix et al. [42] and side-channel analysis (a.k.a. differential computation analysis,
DCA for short), by Bos et al. [14]. Eventually such attacks provided easier meth-
ods to break all previous contributions, and researchers started to shift their
interest from the algebraic security, to such a physical security dimension.

Indeed, several practical attacks have further reduced the security margin
provided by a white-box implementation [14,42]. However, all is not lost, as
such advanced attacks motivated the study of advanced countermeasures. During
the WhiBox contest editions, for example, a few implementations stood more
than one month, while the hacking community tried to break them. From such
implementations stemmed new understanding and improved countermeasures
(see for example [13,9,28,43,41]), that allowed to thwart, or mitigate, the attacks
explained so far.

2.2 White-Box Encoding

In order to counteract such new attacks, designers suggested to adapt known
embedded security countermeasures, like the masking countermeasure [29,40].
For example the work of Lee et al. [34] suggested a masked AES white-box im-
plementation. Although providing an undeniable improvement on the security
of white-box instances, such countermeasures deteriorate white-box implemen-
tations in terms of memory and performances.

Encodings are one of the key concepts introduced by Chow et al. Despite
their use in [20] to counteract algebraic attacks authors worked in the recent
publications to improve the effectiveness of encodings and to provide a masking
stage to the algorithm. The two notions of encodings and masking are sometimes
overlapping, and an encoding scheme may act as a masking scheme, and vice-
versa. Loosely speaking, masking is a technique that removes the correlation
between a value and its representation by, for example, using Shamir’s secret
sharing [46], while encoding is the application of (secret) input and output bi-
jections to a transformation. Thus a secret sharing scheme can be seen as the
application of the XOR bijection with a mask to the identity transformation,
while an encoding can be interpreted as the application of some (non) linear
masking scheme like for example [17] to a secret value.

It has been shown by various authors [13,9,28,43,41] how an accurate choice
of encoding is paramount to the security of the white-box. In particular it seems
that the best approach, as suggested by recent works [9,28,33,45] is to use a
linear masking on top of a non linear one. Such countermeasures are however
expensive to deploy. The designer often needs to find a tradeoff between security
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and complexity (as a combination of memory requirements and running time). As
an example, the winner of the 2019 edition of the WhiBox competition [2] used
such an encoding (as revealed by the reverse engineering attack by Goubin et
al. [28]) and the smallest implementation was about 20 MB for an AES-128
encryption.

In the following section we suggest a new encoding scheme that provides an
improved security, fast operations, and a reduced memory footprint.

3 New Encoding Design for White-Box Constructions

Our proposal is directly inspired by the Benaloh cryptosystem, suggested in [6].
The original scheme is partially homomorphic, meaning that it allows to perform
only one type of operation on plaintexts in the cipher domain. We modified the
original Benaloh cryptosystem while preserving the semi-homomorphic proper-
ties in order to provide a new encoding scheme. Below, we recall the mathemat-
ical background that is used in the rest of the paper. Afterwards, we provide
a brief explanation of the Benaloh cryptosystem together with our suggested
modifications to use it as a white-box encoding.

3.1 Preliminaries

In the rest of this paper we will use notions such as quadratic residue, or higher
residue. Such notions are detailed below.

Definition 1 (Quadratic Residue). Let m ∈ Z∗n for an odd integer n. Then
m is a quadratic residue modulo n if there exists x ∈ Z∗n such that:

x2 ≡ m mod n.

If no such x exists, then m is a quadratic non-residue modulo n.

Definition 2 (Legendre symbol). Given a prime p and m ∈ Z∗p, the Legendre

symbol of m modulo p is denoted
(
m
p

)
and defined as follows:

(
m

p

)
=

0 if m ≡ 0 mod p,
1 if m is a quadratic residue modulo p,
−1 otherwise.

Definition 3 (Quadratic Residuosity Problem). The quadratic residuosity
problem (QRP) is the following: given an odd composite integer n and m ∈ Z∗n,
decide whether m is a quadratic residue or a quadratic non-residue modulo n.

Remark 1. If n is prime, then the QRP can easily be solved by Euler’s criterion:
for any m ∈ Z∗n,

(
m
n

)
≡ m(n−1)/2 mod n (see for instance [38]).
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Definition 4 (Higher Residue). Let m ∈ Z∗n for an odd integer n, m is said
to be a d-residue modulo n if there exists x ∈ Z∗n such that

xd ≡ m mod n.

If no such x exists, then m is said to be a d-non-residue modulo n.

Definition 5 (Higher Residuosity Problem). The higher residuosity prob-
lem (HRP) is the following: given an odd composite integer n and m ∈ Z∗n,
decide whether m is a d-residue or a d-non-residue modulo n.

Remark 2. If the factorization of n is known, then the HRP can easily be solved
(see [38]).

3.2 Original Description of Benaloh Cryptosystem

The Benaloh cryptosystem, introduced by Benaloh in 1994 [6] and improved
by Fousse et al. [25], is an extension of the Goldwasser-Micali cryptosystem
(GM) [26]. The latter’s security relies on the QRP, while the former’s on the HRP.
Where the GM cryptosystem encrypts bits individually, Benaloh’s improvement
allows blocks of bits to be encrypted at once. Both schemes are probabilistic
cryptosystems in the sense that several encryptions of the same message under
the same key yield different ciphertexts. In this section, we describe the original
Benaloh’s cryptosystem.

Key Generation The public and private key are generated as follows.

– Choose a block size r and two large prime numbers p and q such that:

• r|(p− 1),

• gcd(r, (p− 1)/r) = 1,

• gcd(r, q − 1) = 1.

– Set n = p× q and compute φ(n) = (p− 1)(q − 1).

– Select y ∈ Z∗n such that, for any prime factor ri of r:

• yφ(n)/ri 6≡ 1 mod n.

The public key is (n, r, y), and the private key is (p, q).

Encryption Given the public parameters (n, r, y) and a an element of Zr, the
encryption Er is defined as:

Er(a) = yaur mod n,

where u is a random number in Z∗n.
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Decryption Given decryption key (p, q), and ciphertext c, the decryption Dr

is defined as:
Dr(c) = logx(cφ(n)/r) mod n,

where x = yφ(n)/r mod n.

The homomorphic property is easily verified:

Er(a)× Er(b) ≡ yaur0 × ybur1 mod n
≡ ya+b(u0u1)r mod n
≡ Er(a+ b) mod n.

Our work aims at using this cryptosystem as an encoding. This allows to ho-
momorphically perform some operations on the encoded values and thus reduce
the overall memory cost of the white-box. In the following, we propose some
modifications to achieve our goal.

3.3 Modified Benaloh Cryptosystem

We describe and motivate in this section our adaptations of the Benaloh cryp-
tosystem to make it suitable for using as a white-box encoding. We deal with
the encoding itself in Sect. 3.4.

Key Generation The public and private key are generated as follows.

– Choose a prime number p.

– Choose a block size r = 2k such that k ≥ 2 and r is the highest power of 2
which divides p− 1.

– Select randomly y a generator of Z∗p.
– Select randomly t ∈ Z∗p.

The public key is (p, r) and the private key is (t, y).

Compared to the original key generation, the private key t is introduced, u
is fixed to 1 and the modulus is a prime number instead of a composite of two
prime numbers. For the sake of simplicity, we keep the expression “private key”
despite the fact that we use our private key both for encryption and decryption.

Encryption Given the private key (t, y) and the public parameter p, the en-
cryption Et is defined as:

Et(m) = t ym mod p, (1)

where m is an element of Zp.

It is easily verified that:

Et(m0)× Et(m1) ≡ Et2(m0 +m1) mod p.

Compared to the original encryption, the definition set of m is extended to
the entire group Zp.
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Decryption Given the decryption key (y, t, p, r) and the ciphertext c, the de-
cryption function Dt is defined as:

Dt(c) = logx((t−1c)(p−1)/r) mod p, (2)

where x = y(p−1)/r mod p.

The decryption differs from the original one only by the multiplication by
t−1 mod p.

Motivations

About the modulus. The modulus has been chosen to be a prime number. Since
our proposal will rely on the QRP and will use a small modulus, there is no
security benefit in choosing a composite modulus as the QRP is easy to solve
even for small composite moduli.

About the block size. The block size r has been chosen to be a power of 2 in
order to ensure that the least significant bit (LSB) of Dt(Et(a + b)) equals the
exclusive-or between the LSB of a and the LSB of b. Our proposal is based on
this property, with the condition r = 2k and k ≥ 2.

About the base. The base y has been chosen to be a generator of Z∗p as it guaran-

tees that y(p−1)/r 6≡ 1 mod p. It is a requirement from the original key generation
algorithm. The secrecy of y is a consequence of Sect. 4.1.

About the key. In our proposal, the senstive data bits will be carried by the LSB
of the exponent of y. The private key t has been introduced to hide this bit.
If t was not present, with only the three previous modifications to the original
Benaloh scheme, the sensitive bit m could be guessed by using the Legendre sym-
bol of E1(m), which equals 1− 2m. The multiplication of E1(m) by a uniformly

random number t makes its Legendre symbol equal to
(
t
p

)
(1 − 2m), which is

equal to 1 or −1 with the same probability 1/2.

3.4 Modified Benaloh Cryptosystem as White-Box Encoding

In this section we show how our modified Benaloh cryptosystem can be used as
a white-box encoding. Our proposal relies on three well-known facts:

1. Any Boolean function can be expressed as a logical circuit composed of XOR,
AND and NOT gates.

2. The sum in Z of two bits a and b is a + b = (a ∧ b) || (a ⊕ b), where ||
denotes the concatenation operator.

3. The sum in Z of one bit a with 1 is a+ 1 = a || (a ⊕ 1) = a || ā.

We thus propose to consider the cryptographic algorithm as a logical circuit
which gates are modified-Benaloh encoded. We describe hereafter how to encode
(resp. decode) the circuit’s input (resp. output) and how to evaluate its gates.
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Encoding and decoding functions

Encoding step. To encode a bit a, the modified key generation method (see
Sect. 3.3) is run and the modified encrypting function (cf. Eq. (1)) is applied to
2s+ a, where 0 ≤ s < (p− 1)/2 is uniformly drawn at random. We will denote
the encoding function by Enc:

Enc(a) = Et(2s+ a).

Here, s is introduced to make our encoding probabilistic, as does the random u in
the original Benaloh scheme. Introducing this s instead of keeping the original u,
we save one entropy bit: indeed, if the bit x was encoded as Et(x) = tyxur mod p,
then Et(x) = tyvr+x mod p with v = logy u, and since r ≥ 4 and r | (p − 1),
(vr + x mod p− 1) ≡ x mod 4. In other words, the second LSB of the exponent
of y would always be 0. On the other hand, having both u and s does not
provide more entropy to Enc(x). Therefore, we discard u but introduce s to keep
the probabilistic property of the Benaloh scheme.

Decoding step. To decode a value Enc(a), the modified decryption function (cf.
Eq. (2)) is applied and the result is reduced modulo 2 to get a single bit. We
will denote the decoding function by Dec:

Dec(Enc(a)) = Dt(Enc(a)) mod 2.

Evaluating Logical Gates

As recalled before, a circuit can be constructed using only XOR, AND and NOT

gates. We describe hereafter how each gate can be evaluated under the modified
Benaloh-encoding.

From now, we consider that the encodings of the bits a and b are:

Enc(a) = Et0(2s+ a) = t0 y
2s+a mod p

Enc(b) = Et1(2s′ + b) = t1 y
2s′+b mod p.

XOR Implementation. To compute an encoding of a⊕b, it is sufficient to multiply
the encoding of the two bits:

Enc(a)Enc(b) ≡ t0t1 y2(s+s′)+a+b mod p

≡ t0t1 y2(s+s′+ab)+(a ⊕ b) mod p. (3)

Let us verify that indeed Dec(Enc(a)Enc(b)) = a⊕ b. Let be α ≡ 2(s+ s′ +
ab) + (a ⊕ b) mod p − 1. Since p − 1 is even, α mod 2 = a ⊕ b. Setting t = t0t1,
the decryption function Dt returns α reduced modulo r = 2k, thus this step
preserves the k least significant bits of α. Therefore, the result of the decoding
function is a⊕ b.
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It follows that an arbitrary number of XOR gates can be evaluated in a row
without caring for carries, that is to say, if {a1, . . . , an} is a set of bits:

Dec

(
n∏
i=1

Enc(ai)

)
= a1 ⊕ · · · ⊕ an.

It is worth noticing that only modular multiplications, hence only CPU op-
erations, are needed to evaluate XOR gates. Thus, the evaluation of any linear
function comes at no memory cost by using our modified-Benaloh encodings.

AND Implementation. Contrary to the XOR operation, we use tables to implement
the AND operation. A naive solution is to use one table with two operands as
inputs. This table is used to decode each operand, evaluate the AND gate and
re-encode the result. Each table admits p2 entries and returns a log2 p-bit value,
which implies a memory consumption of p2dlog2 pe bits per table.

We present instead another solution based on right-shift tables admitting only
p entries, thus reducing the memory consumption per table down to pdlog2 pe
bits. This solution is based on the fact that when Enc(a) and Enc(b) are mul-
tiplied together, y is raised to the power 2(s + s′ + ab) + (a ⊕ b) (see Eq. (3)).
Then, right-shifting it results in s+s′+ab. Similarly, right-shifting the exponent
of y in Enc(a) (resp. Enc(b)) gives s (resp. s′). By adding these three numbers,
we have 2(s + s′) + ab. Thus, we obtain with our solution the encoding of the
desired bit ab as Enc(ab) = Et(2s

′′ + ab) for some t and s′′ = s+ s′.

The first step is thus to right-shift the power of y in the expression of
Enc(a)Enc(b), Enc(a) and Enc(b). The fact that r = 2k impedes these three
right shifts to be performed in a homomorphic way by successive left shifts.
Thus, they have to be tabulated. Each table decrypts its entry (instead of de-
coding it, otherwise the random s’s would be lost), then right-shifts the result
and finally encrypts the shifted value to which is added a random even number
(see Fig. 1).

Table

Enc(a) = t0y
2s+a mod p

Enc(s) = t2y
2s2+s mod p

Table

Enc(b) = t1y
2s′+b mod p

Enc(s′) = t4y
2s4+s′ mod p

Table

Enc(a)Enc(b) =

t0t1y
2(s+s′+ab)+(a⊕b) mod p

Enc(s + s′ + ab) =

t6y
2s6+s+s′+ab mod p

Fig. 1. Input and output of the three right-shift tables.
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The output of the three tables are multiplied together to get, according to
the notations in Fig. 1, Enc(ab) = ty2(S+s+s′)+ab mod p with t = t2t4t6 and
S = s2 + s4 + s6.

NOT Implementation. To get an encoding of ā = a⊕1, one must multiply Enc(a)
by any non-quadratic residue modulo p: let v be one of them, then there exists
an integer α such that v ≡ y2α+1 mod p. Thus v Enc(a) ≡ t0y

2(s+α)+a+1 ≡
t0y

2(s+α+a)+ā mod p.
Another solution for the NOT implementation can be used: it is sufficient to

integrate the NOT operation to the next table. For instance, the next table can
be an AND table. The evaluation of the NOT gate can thus be delegated to the
next table due to the linear property of the XOR gate.

From now, sequences of binary operations composed with ANDs, XORs and
NOTs can be computed under our modified-Benaloh encoding.

3.5 Using the modified-Benaloh Encoding in a White-Box Design

Hereafter, we give a way to design a white-boxed cipher by using the modified-
Benaloh encoding. As an example, we give in Sect. 5 an AES implementation
using our proposal.

Overall parameters The modified-Benaloh key generation algorithm (see Sect. 3.3)
is run to get the parameters p, r and y. They have to be common to all encoded
bits within the white-box, in order for the logical gates to be correctly evaluated
as described in Sect. 3.4. These parameters might be refreshed at any moment, at
the cost of an extra decoding-then-encoding step on each encoded bit to switch
from the former set of parameters to the new one.

Encoding Data Bits

Encoding the key. The `-bit cipher key is embedded within the white-box in a
modified-Benaloh encoded form. The white-box embeds a table with ` entries,
each one being of the form tj y

2sj+kj mod p, where 1 ≤ j ≤ ` and kj is the jth

key bit.

Encoding the plaintext. The white-box turns each plaintext bit to a modified-
Benaloh encoding using a 1-bit input table. Each bit of the plaintext has its own
encoding table. Such tables are of the form:

Ti = {Enc(0),Enc(1)} = {ti y2si mod p, ti y
2s′i+1 mod p}.

Note that ti here is fully independent from the tj ’s that protect the cipher key.
Let us detail here the use of the private key ti. We can remark that it must

be the same for the two possible encodings of the same bit: suppose that we
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could have Enc(0) = Et(2s) and Enc(1) = Et′(2s
′ + 1) with t 6= t′ and (t, t′)

being different for each bit to encode. Let us consider a table that, within the
circuit, decrypts its entry. As an example, it could be a table evaluating an AND

gate. For this decryption step, the private key of the table entry, or a product of
several of them, if the entry is a product of several encodings, has to be known.
Then, when the entry of such a table would be a combination of n encoded input
bits, 2n tables (one per possible n-tuple of encoded bits) would be necessary to
perform the operation delegated to the table. Therefore, the private key ti has
to be fixed per encoded bit and not per encoding.

Cipher Evaluation Once each bit of the plaintext is encoded, the cipher,
designed as a logical circuit, can be evaluated. One has just to perform binary
operations on the encoded bits as explained in Sect. 3.4.

Decoding Data Bits The ciphertext’s bits are decoded from their modified-
Benaloh encoded form by a table that applies the decoding function on its entries.
Note that one table per ciphertext bit is necessary, as each decoding table uses
a different private key from the other decoding tables.

4 Security Considerations

With our modified-Benaloh scheme, we proposed to encode each bit b as:

Enc(b) = t y2s+b mod p

for some random numbers t and s. All logical operations between encoded bits are
done in the encoding domain with modular multiplications and table accesses.

In this section we provide a security analysis of our proposal, by addressing
some potential flaws.

4.1 About the Shift Tables

In this section, we study two attack paths opened by the shift tables used to
evaluate the AND gates.

The input-output-squared attack. Let ni,b = ti y
2sb+b mod p be the Benaloh-

encoded input of a shift table and no,b = to y
2s+sb mod p the corresponding

output. For the sake of clarity, we set here s = 0 as it will not be useful in this
section. Then ni,b n

2
o,b ≡ ti t2o y4sb+b mod p.

The attacker can collect ni,0, no,0, ni,1 and no,1 and compute:

z = ni,0 ni,1 n
2
o,0 n

2
o,1 mod p

= t2i t
4
o y

4(s0+s1)+1 mod p.
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Since y is a generator of Z∗p, there exists τi, τo ∈ {0, . . . , p− 1} such that ti =

yτi mod p and to = yτo mod p. This implies that z = y4(τo+s0+s1)+2τi+1 mod p.

If the attacker can guess the least significant bit (LSB) of τi from z, then

he can compute
(
ti
p

)
= τi mod 2 and therefore b. However, whereas the LSB

of logy z is actually independent from the chosen generator y, it is not the case
of its second LSB: let y′ be another generator of Z∗p and a be the integer such
that y = y′2a+1 mod p; then logy′(z) = logy′(y) logy(z) ≡ 2(a + τi) + 1 mod 4.
Since a can be odd or even3, the knowledge of z does not give any information
on τi mod 2.

The frequency attack. Suppose that we want to AND two bits a0 and a1. Let

s
(0)
0 , s

(1)
0 , s

(0)
1 and s

(1)
1 be four integers modulo (p − 1)/2 and let Enc(a0) =

t0 y
2s

(a0)
0 +a0 mod p and Enc(a1) = t1 y

2s
(a1)
1 +a1 mod p. The table fed by Enc(a0)×

Enc(a1) during the evaluation of the AND gate (see Fig. 1) returns some α =

t y2δ+β mod p where β is a bit that equals a0a1 ⊕ ((s
(a0)
0 + s

(a1)
1 ) mod 2). Since(

α
p

)
=
(
t
p

)
(1 − 2β),

(
α
p

)
=
(
t
p

)
with probability 3/4 if s

(0)
0 ≡ s

(1)
0 mod 2

and s
(0)
1 ≡ s

(1)
1 mod 2, which leaks the value of a0a1. Therefore, the LSB of the

random s
(0)
0 , s

(1)
0 , s

(0)
1 and s

(1)
1 should be adjusted to avoid this, for instance by

imposing s
(0)
i mod 2 = s

(1)
i + 1 mod 2 for i = 0, 1. In the case where such a

solution would not be tractable, we suggest to implement a Boolean-masked AND

to decorrelate the content of the shift tables from the bits to AND together.

4.2 About the Key

We recall that in our proposal in Sect. 3.3, the cipher key is embedded in a
Benaloh-encoded form within the white-box. Encoded this way, no information
can be extracted on the key just looking at its encoded form: since each key bit
b has its own random private subkey t, Et(b) is indistinguishable from a random
number in Zp and so t acts like a one-time pad.

On the other hand, some information about the key may be revealed by the
following DCA-like attack. Seeing the cipher as a logical circuit, any gate output
is Benaloh-encoded with a random t unknown from the attacker but fixed over
all executions of the white-box. Then any variation of the Legendre symbol of
the gate output is only due to a variation of the encoded bit.

Therefore, the attacker can focus on an AND gate which inputs depend on
a few key bits. By making an assumption on these key bits, the attacker can
compute an expected sequence of outputs of his targeted AND gate when the
input plaintexts vary. Then, by comparing this sequence to the Legendre symbols
actually output by the white-box, the attacker can accept or reject his hypothesis
on the subkey. Repeating this procedure with different gates depending on other
key bits, he can reduce the subset of possible cipher keys.

3 For instance, in Z∗59, all odd powers of 2 but 257 ≡ −1 mod 59 are generators.
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In order to thwart such an attack, a possible countermeasure consists in
implementing a Boolean-masked circuit (in addition to applying the Benaloh-
encoding). The impact of the masking on the XOR gates comes at no memory
cost. However, concerning the AND masking, we suggest to use the secure AND

proposed by Biryukov et al. [8]. The impact on the number of tables is thus
limited to only a factor 4.

4.3 Summary

In order to prevent the identified security issues, we decline our Benaloh-encoded
white-box into two flavours:

1. Proposition 1: a lightweight white-boxed cipher without countermeasure,
2. Proposition 2: a white-boxed cipher implemented as a Boolean-masked cir-

cuit to protect vulnerable AND gates (Section 4.2).

We close this section with a brief estimation of the computational effort
needed to defeat our propositions:

1. Proposition 1 can be defeated by the Legendre symbol attack of Section 4.2.
It is equivalent to a differential computational analysis (DCA) with a Leg-
endre symbol leakage model. The results summarized in [9, Table 1] imply
that the cost of the DCA Legendre symbol attack is O(nk log2 p), where n
is the length of the trace, k is the number of key hypotheses and log2 p the
cost of performing Euler’s criterion.

2. Proposition 2 can be defeated by a 2nd-order DCA if the sensitive data
are shared into 2 bits. [9, Table 1] implies in this case that the cost of the
Legendre symbol attack is O(n2k log2 p).

5 Performances: Example with AES-128 Encryption

In this section we provide performances estimations for an AES white-box imple-
mentation designed with our two propositions with the security improvements
described in Sect. 4.3. Furthermore, we compare our AES-128 white-box design
performances against other state-of-the-art designs, with respect to execution
time and space requirements.

The AES can be written with only elementary gates. In particular, an AES
can be only composed of XOR, NOT XOR (NXOR), and AND operations. The AES
requires only XOR gates to implement, except the SubBytes function that re-
quires also AND gates. For SubBytes, we use the bitsliced software implemen-
tation proposed by Calik [18, Sect. 7] which is an improvement of the Boyar
and Peralta [15] circuit. He proposed an AES SBox with 113 gates, composed
of 77 XORs, 4 NXORs and 32 ANDs. Following our proposal in Sect. 3.4), only AND

gates require tables. Hence, the memory consumption of an AES-128 with our
proposition is 15 360× p× dlog2(p)e bits, where 15 360 = 32× 10× 16× 3:

– 32 ANDs are required for each SBox.
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– There are 10 rounds in the AES-128.
– There are 16 input bytes.
– There are 3 tables for each AND with our solution (see Sect. 3.4).

Besides, the secret key is considered to be embedded within the white-box in
a Benaloh-encoded form: it corresponds to 128 tables of dlog2(p)e bits. Finally,
the white-box requires one table to encode each plaintext bit, and one table
per ciphertext bit to remove all the random masks ti accumulated through the
circuit: it corresponds to 128 × 2 = 256 tables of pdlog2(p)e bits. It leads to a
total of 15 744 = 15 360 + 128 + 256 tables. We can note that whatever the size
of the chosen parameter p, the number of tables is always the same, i.e. 15 744.

In a same way, the execution time is constant and is not dependent on the
size of the parameters (as long as they fit in the architecture registers). Indeed,
whatever the chosen parameters of the implementation, we have 15 744 tables
to access and 30 520 = (92 + 128 + ((77 + 4 + 3 × 32) × 16)) × 10 XOR gates to
evaluate, where:

– 92 represents the number of XORs in the MixColumns.
– 128 represents the number of XORs for the AddRoundKey.
– 77 + 4 represents the number of XORs in the SBox computations.
– 3 × 32 represents the number of ANDs in the SBox computations, and the

number of XORs required during the AND calculations.
– 16 represents the number of SBox in the AES-128.
– 10 represents the number of rounds in the AES-128.

It leads to an execution time of 15 744 table accesses and 30 520 short modu-
lar multiplications. The NOT gates are not taken into consideration. Indeed, we
consider that these gates can be delegated to the next table of the circuit.

Table 1 gives the min and max bounds for memory consumption of an AES
white-box using our proposition, where the bounds depend on the used prime
number p.

Table 1. Memory consumption according to the bit size of p.

dlog2(p)e memory consumption

(megabytes, MB)

4 [0.07, 0.11]

6 [0.39, 0.74]

8 [2.03, 4.01]

10 [10.10, 20.14]

12 [48.42, 96.77]

14 [225.86, 451.64]

16 [1 032.35, 2 064.61]

In Fig. 2 we provide a comparison of sizes and estimated execution time of
published AES-128 white-boxes and our suggestions Proposition 1 and Propo-
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sition 2. The entries are sorted by publication date from the left to the right.
The comparison aims at providing an overview of the evolution of white-box
design sizes according to the execution time of the implementation. Figure 2
thus compares the size of a reference AES implementation [21] with the size of
the white-box implementations of Chow et al. [20], Bringer et al. [16]4, Xiao et
al. [48], Karroumi [30], Lee et al. 1 [32], Lee et al. 2 [34], Lee et al. 3 [33],
Luo et al. [37], Bai et al. [3], Biryukov et al. [9], Seker et al. [45]5 and this work.

The execution time estimations are obtained by using the number of LUT
accesses multiplied by 0.8 ns (typical RAM access times for DDR3 memory). For
the works that did not use any table, we accounted for 0.5 ns per computation
(typical operation time for a 2 GHz processor).

For our implementation, we choose a 6-bit prime number. Given the remarks
of Sect. 4.3, a 6-bit prime number does not significantly weaken our white-
box compared to longer primes, while allowing a competitive memory footprint.
Concerning memory size, the overall memory cost of the complete implemen-
tation is dominated by the AND tables. For example, by choosing p = 53, with
the implementation described in Sect. 3, Proposition 1 leads to an implemen-
tation of 5,014,144 bits (626.76 kilobytes), coherently with Tab. 1. The execu-
tion time is constant and is not dependent of the size of the prime number:
15 744× 0.8 + 30 520× 0.5 = 27 855 ns.

We remark that our new encoding allows a more efficient white-box design
than the Chow et al. [20] one, and we also argue that our design may be adapted
to a masked implementation with reduced size impact compared to the one of
Biryukov et al. [9].

6 Further Work

In this section we provide a few ideas to further develop our encodings. We orga-
nized such ideas in two main sections. The first section suggests improvements to
the side-channel security of white-boxes. Afterwards we present ideas to thwart
fault attacks.

6.1 Against Side-Channel Attacks

White-box implementations are vulnerable to attacks exploiting software execu-
tion traces containing information about the memory addresses being accessed
or about manipulated data. In order to complexify such attacks, one may add
countermeasures. For example, one can:

4 Bringer et al. did not provide speed figures. We used the count of monomials in
Table 1 of their work and accounted one operation per monomial.

5 Seker et al. did not provide memory figures. In order to obtain the memory con-
sumption of their design we used their (2, 1)-masking, assumed that each gate is
encoded separately (in order to avoid loops) and that each gate is encoded in 1 byte.
This allows a fair comparison against for example the circuit of Biryukov et al. [9],
where the ratio between the number of gates and the resulting size is about 6.4.
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Fig. 2. Memory performances and estimated execution time of published AES-128
white-boxes.

– Shuffle and randomize the computations by introducing dummy operations
as suggested in [10]. This can be achieved for example by computing Enc(0)×
Enc(b) for some b, at random time.

– It is possible to mask the AES circuit prior to encoding it into tables. The
impact on the size and speed would be balanced by the augmented security.
We also remark that such countermeasure can easily thwart the Legendre
symbol attack presented in Sect. 4.2.

6.2 Against Fault Attacks

White-box implementations are particularly vulnerable to fault attacks. An at-
tacker can easily change the execution flow of the implementation or substitute
the value of a variable [11, Sect. 7.2]. Hence, the design of a white-box must
integrate countermeasures against such attacks. Typically redundancy (use of
redundant representations such as a residue number system – RNS [4], or use
of redundant information), error detecting or correcting techniques, or infective
countermeasures [5] are used to thwart such attacks. For example, in order to
introduce redundancy, one can observe that the exponents used in the encod-
ings are values modulo r. Thus by using a composite r, it is possible to perform
smaller computations modulo each prime dividing r. The result can then be re-
computed by using the Chinese remainder theorem. Each of the two submodules
can be used to:

– Encode the same sensitive value, which provides redundancy.
– Encode different bits of the plaintext, which provides efficiency.
– Encode the correct value on one submodule, a random value on the second

one, which provides randomization.
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7 Conclusion

This work addresses the problem of encoding data when building a white-
box implementation. We suggest a new encoding scheme based on the Benaloh
cryptosystem that allows both compactness and speed. In particular, the semi-
homomorphic property of our encoding allows to drop half of the tables (in our
example those used for the XOR operations) and to speed up computations by
exchanging part of the tables (used for example in [20]) with homomorphic op-
erations. We modify the Benaloh scheme in order to obtain an encoding that
inherits the semi-homomorphic properties of the original design, while fitting
the size constraints of the white-box context. Our new proposition allows the
white-box designer to tune the performances and adapt the security of the im-
plementation to meet its requirements.

As future work, we remark that it seems possible to enhance speed and mem-
ory consumption of our proposal. In this regard, a promising line of research is to
parallelize multiplications and table accesses. Another direction for further work
is the study of other homomorphic encryption schemes (e.g. lattice based). In
particular, the study of fully homomorphic schemes may turn out advantageous.
Indeed, we have shown in this paper that one can modify a semi-homomorphic
scheme and use it as encoding. Thus it would be interesting to investigate the
modification of a fully homomorphic scheme in a similar way. It could enable to
enhance the security and the memory consumption by only keeping the input
and output tables.
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