
Hardware Implementations of Pairings at
Updated Security Levels

Arthur Lavice1,2,3 [0000−0003−2804−1608] , Nadia El Mrabet1 [0000−0003−3840−584𝑋] ,
Alexandre Berzati2, Jean-Baptiste Rigaud1 [0000−0003−7394−5345] , and

Julien Proy2 [0000−0002−0402−6780]

1 Mines Saint-Etienne, CEA, Leti, Centre CMP, F-13541 Gardanne France,
firstname.lastname@emse.fr

2 Thales DIS Design Services SAS, Meyreuil, France,
firstname.lastname@thalesgroup.com

3 ARMINES, Paris, France

Abstract. Pairings are cornerstones to several interesting cryptographic
protocols including Non-interactive ARgument of Knowledge currently
used in Zcash cryptocurrency. The Kim and Barbulescu Number Field
Sieve attack has weakened pairing-friendly curves. Most impacted are
the famous BN curves which now require an increase of the parameters
to provide equivalent security. Recent cost estimations of pairings have
recommended switching to other curves but their selections are no longer
clearly straightforward. This paper aims at providing the first hardware-
based pairing implementations on the best curve candidates at both 128-
bit and 192-bit security levels. The proposed architecture intends to fit
both lightweight FPGA and ASIC purposes and the design is prototyped
on a Kintex-7 FPGA device. It computes a pairing within 42.7 ms for
128-bit of security and 184.2 ms for 192-bit.

Keywords: Pairings · Lightweight Hardware/Software Implementations
· Updated Key Size · Parallel Computation

1 Introduction

Pairings are cryptographic tools whose bilinearity property allows finding effi-
cient solutions to many protocols such as the tripartite Diffie-Hellman key ex-
change [23] or short signature schemes [9]. It also enables the creation of new
protocols such as Identity-Based Encryption [8] or zero knowledge-Succinct Non-
interactive ARgument of Knowledge (zk-SNARK) [7] used in Zcash cryptocur-
rency. A pairing is a bilinear and non-degenerate map 𝑒 : G1×G2 → G3 where G1

(resp. G2) is generally taken as a subgroup of an elliptic curve over 𝐸 (F𝑝) (resp.
𝐸 (F𝑝𝑘)) and G3 is usually a subgroup of F𝑝𝑘 . G1,G2, and G3 are subgroups of
prime order 𝑟. Pairing computation strongly depends on curve parameters such
as 𝜌 =

log 2 (𝑝)
log 2 (𝑟) . But pairings friendly elliptic curves are rare and a lot of research

has been done to find suitable curves such as BLS [5], BN [6], KSS [24] and
DCC [13] curves. A taxonomy of these methodologies is found in [15].

2 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy

Through numerous arithmetic optimizations, BN curves were found to be the
best choice for pairings at the 128-bit security level. But the Kim and Barbulescu
attack [27] has improved the discrete logarithm attack against these curves and
thus threatens the security of many families of pairings. Since this attack depends
on curve parameters, it has reshuffled the field and, BN curves are no longer the
best ones. Now, performance time seems to be similar on several other curves
at the 128-bit security level. In [4], the authors make an extensive literature
review to study actual security of pairings. Their estimations only take into
account the complexity of modular multiplications and neglect other operations.
This approach may not be sufficient to determine the best curves at the 128-
bit security level. Another approach from [18] is to create new pairing-friendly
curves resistant to the Kim and Barbulescu attack.

There are many time-efficient software versions of pairings but their imple-
mentations on constrained devices are challenging. Indeed, one pairing compu-
tation could take seconds to complete with the 128-bit security level [36] prior to
the Kim and Barbulescu attack. Having fast pairing implementations on small
devices is essential,for example, to guarantee user-friendly utilization of Zcash
currency on a hardware wallet.

Our contribution. This paper proposes a way to efficiently support emerging
curves at both the 128 and the 192-bit security levels. A new formula for squaring
over cyclotomic fields G𝜙2 (𝑞) is proposed and is more suitable for curves intro-
duced in [18] than the previous one given in [17]. Our work provides a 𝑡𝑖𝑚𝑒×𝑎𝑟𝑒𝑎
efficient lightweight coprocessor with configurable modulo to support multiple
curves. This coprocessor enables parallel computation of modular multiplica-
tions with additional operations in order to cut down additional costs brought
by neglected operations such as modular additions. This paper also presents a
hardware-software co-design architecture based on a Microblaze CPU to demon-
strate the performance of our coprocessor. The genericity of our design allows us
to give the first comparison between hardware implementations of several pair-
ings at updated security levels with the same design. Finally, this paper shows
that, following the Kim and Barbulescu attack, the optimal choice of a curve at
the 128-bit security level depends on the target platform.

Organization of the paper. Section 2 provides some mathematical back-
ground on pairings as well as a summary of the latest estimations of pairing
costs at updated security levels. Section 3 details curve parameters and recalls
some arithmetic optimization of the Miller algorithm and the final exponentia-
tion formula for the 3 best candidates at the 128-bit security level and for the
best candidate at the 192-bit security level. It also provides a new formula for
cyclotomic squaring in G𝜙2 (𝑞2) (see Eq. 13). In Section 4, we present our dedi-
cated hardware implementation used to accelerate operations on the base field
and our hardware/software codesign used for pairing implementations. Finally,
we summarize our work and discuss future research directions in Section 5.

Hardware Implementations of Pairings at Updated Security Levels 3

Notation. In this paper, we will use the following notation. F𝑝: a finite field of
prime characteristic 𝑝. F𝑝𝑘 : an extension field of degree k of F𝑝. G[𝑟]: a subgroup
of order 𝑟 of G. 𝑒 (resp. 𝑛): the number of words used to represent numbers in F𝑝
(resp. log 2 (𝑝)). 𝑀𝑞 (resp, 𝑆𝑞, 𝐴𝑞, 𝐷𝑏𝑙𝑞): a multiplication (resp. square, addition,
double) in F𝑞. 𝑀𝑢𝑙𝑥𝑞: a multiplication of an element F𝑞 by 𝑥, a small constant
in F𝑞.

2 Background on Pairings

The following part gives some background about pairings and their implementa-
tions. There are several pairings such as [22,20,34] but constructions of the most
efficient ones are similar to the Ate pairing defined below [19].

2.1 Introduction and definition

Definition 1. (Ate pairing). Let 𝐸 be an elliptic curve defined over F𝑝; 𝑟 be
a large prime divisor of #𝐸 (F𝑝); 𝑡 be the trace of 𝐸 and 𝑘 be the embedding
degree of 𝐸 with respect to 𝑟 (𝑘 is the smallest integer such thar 𝑟 |𝑝𝑘 − 1).
Let G1 ⊆ 𝐸 (F𝑝) [𝑟], G2 ⊆ 𝐸 (F𝑝𝑘) [𝑟], G3 = F𝑝𝑘 [𝑟] and 𝑢 = 𝑡 − 1.
The Ate pairing is defined as:{

𝑒 : 𝐸 (F𝑝) [𝑟] × 𝐸 (F𝑝𝑘) [𝑟] → F𝑝𝑘 [𝑟],
(𝑃,𝑄) ↣ 𝑓𝑢,𝑄 (𝑃)

𝑝𝑘−1
𝑟 .

(1)

The computation of such pairing relies on two distinct steps. First, the func-
tion 𝑓𝑢,𝑄 (𝑃) is computed with Miller’s algorithm (see Algorithm 1). The com-
plexity of Miller’s algorithm depends on the Hamming Weight(HW) and the
log 2 of 𝑢. To decrease the complexity of Miller’s algorithm, the Non-Adjacent
Form (NAF) is classically used to represent 𝑢. The second part is the so-called
final exponentiation. It raises 𝑓𝑢,𝑄 (𝑃) at the power of (𝑝𝑘 − 1)/𝑟.

Algorithm 1 Miller’s algorithm [30]

Input: 𝑢 = (𝑢𝑛−1 . . . 𝑢0) NAF decomposition of 𝑡 − 1, 𝑃 ∈ 𝐸 (F𝑝) and 𝑄 ∈ 𝐸 (F𝑝𝑘)
Output: 𝑓𝑢,𝑄 (𝑃) ∈ F𝑝𝑘 [𝑟])
1: 𝑇 ← 𝑄; 𝑓1 ← 1;
2: for 𝑖 = 𝑛 − 2, ..., 0 do
3: 𝑇 ← 2𝑇 ; 𝑓1 ← 𝑓 21 × 𝑙𝑄,𝑄 (𝑃)/𝑣2𝑄 (𝑃); Where 𝑙𝑄,𝑄 is the tangent of 𝐸 at point 𝑄,

and 𝑣2𝑄 is the vertical line of 𝐸 at point [2]𝑄.
4: if 𝑢𝑖 = 1 then
5: 𝑇 ← 𝑇 +𝑄; 𝑓1 ← 𝑓1 × 𝑙𝑄,𝑇 (𝑃)/𝑣𝑄+𝑇 (𝑃); Where 𝑙𝑄,𝑇 is the line (𝑄𝑇),

and 𝑣𝑄+𝑇 is the vertical line of 𝐸 at point 𝑄 + 𝑇 .
6: else if 𝑢𝑖 = −1 then
7: 𝑇 ← 𝑇 +𝑄; 𝑓1 ← 𝑓1 × 𝑙−𝑄,𝑇 (𝑃)/𝑣−𝑄+𝑇 (𝑃);
8: end if
9: end for
10: return 𝑓1 = 𝑓𝑢,𝑄 (𝑃)

4 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy

2.2 Pairing optimizations

Pairing implementations are based on different arithmetics presented in Fig. 1.
Elliptic curves and extension field arithmetics depend on modular arithmetic
which again depends on integer arithmetic. Curve parameters have a direct im-
pact on the complexity of these operations. The three principal optimizations
regarding these parameters are cited below:

Embedding degree 𝒌. It is a crucial parameter since it defines the extension
fields used during computations. Having 𝑘 in the form 𝑘 = 2𝑖3 𝑗 enables efficient
extension field arithmetic with Karatsuba and Toom-Cook formulae [28] and is
one prerequisite to using twisted curves during computations [14].

Twisted curves. Let 𝐸 be an elliptic curve defined over F𝑝𝑘 . An elliptic curve

𝐸 defined over F𝑝𝑘/𝑑 is called a twisted curve of degree 𝑑 of 𝐸 if there exists an

isomorphism 𝜓𝑑 from 𝐸 into 𝐸 According to the value of 𝑘, the potential degrees
for a twist are 𝑑 = 2, 3, 4 or 6. Computing Miller’s algorithm on the twisted curve
also enables avoiding the computation of the denominator when 𝑘 is a multiple
of 2 [29] or 3 [38]. Twist also makes line and tangent evaluations sparse elements
of F𝑝𝑘 (with at least one null coefficient).

Generation of curves. The generation of pairing-friendly elliptic curves is the
most important step because it conditions the use of optimizations cited in this
section. A family of pairing-friendly elliptic curves is a mathematical method to
create curves with a prescribed embedding degree as in the taxonomy presented
in [15]. The characteristic 𝑝, the trace 𝑡 and a large prime factor of 𝑟 such that
𝑟 |#𝐸 (F𝑝) are given by polynomials evaluated in an integer 𝑢. This integer (𝑢)
has a significant impact on the complexity of pairings. Hence it is important to
choose an appropriate generator 𝑢 with low Hamming Weight representation.

Pairings
Miller’s algorithm

Final exponentiation

Elliptic curve
Point additions/doublings
Scalar multiplications

Extension field
Operations in Fpk

Operations in Fpk/d

Modular
Operations in Fp

Elementary
Operations on
small integer

Fig. 1: Required operations for pairings

Hardware Implementations of Pairings at Updated Security Levels 5

3 Selection of pairing-friendly curves and parameters

3.1 Summary of estimated pairings complexity

The arithmetic required to implement a pairing depends on curve parameters.
For this reason, much attention was given to Optimal Ate pairings [34] on BN
curves. But parameters that make a curve pairing-friendly also make it vulner-
able to the extended tower Number Field Sieve (NFS) attack presented in [27].
As a result, recent security analysis of pairings presented in [3] and [4] have
led to new key size requirements. BN curves are the most impacted and are no
longer considered as interesting curves for pairings. Recent research has iden-
tified more resilient curves against such attacks. To our knowledge, the most
promising alternative are curves presented in [18].

In [4] the authors estimate pairings complexity by taking into account only
the cost of modular multiplications. They use the compressed squaring formulae
given in [25] to estimate the complexity of the final exponentiation of pair-
ings on BLS12, BLS24 and KSS18 [24] curves which admit a twist of degree 6.
Compressed squaring is an interesting method since it decreases the number of
multiplications but it computes several modular inversions. To compute modular
inversions of a number 𝛼 ∈ F𝑝 with the coprocessor presented in Section 4, we
have to use Fermat’s theorem and compute 𝛼 raised to the power of 𝑝−2. Then,
the cost of a modular inversion is approximated for naive implementation at the
cost of ⌈3𝑛/2⌉𝑀𝑝, which is significant.

Moreover, compressed squaring requires storing several elements in F𝑝𝑘 [2].
This increases the memory needed by approximately 30% for a slight latency
benefit compared to cyclotomic squaring of [17]. We choose to use the formula
proposed in [17] in order to target implementation on constrained devices. Ta-
ble 1 presents the best pairing candidates at the 128-bit and 192-bit security
levels according to [4] and [18]. In what follows, we denote by GMT8 the curve
presented in [18] with embedding degree 𝑘 = 8.

The complexity of Miller’s algorithm is critical when computing the product
of pairings in short signatures for example. When computing scalar multipli-
cations on G1, log 2 (𝑟) and log 2 (𝑝) are crucial parameters; log 2 (𝑟), log 2 (𝑝),
the embedding degree 𝑘 and the degree of the twist 𝑑 are also important when
computing a scalar multiplication on G2.

Table 1: Theoretical complexity of pairings at different security levels [4,18]
*: 𝑀𝑝 cost depends on log 2 (𝑝)
Security Method 𝒌 log 2(𝒑) Miller (𝑴𝒑*) Final Expo. (𝑴𝒑*) Total (𝑴𝒑*)

BLS 24 319 9 381 23 400 32 781
BLS 12 460 7 438 8 151 15 589
GMT 8 544 4 502 7 056 11 558
DCC 15 383 6 836 19 190 26 026

128-bit

KSS 16 340 7 534 18 514 26 048

BLS 24 559 16 368 36 573 52 941
192-bit

KSS 18 657 13 488 30 473 43 961

6 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy

At the 128-bit security level, several curves have similar complexity but have
different points of interest. This is especially the case of the first curve from
Table 1 (BLS24) and the second candidate (GMT8). At the 192-bit security
level, KSS18 and BLS24 have similar complexity but also similar parameters.
KSS18 is a bit less interesting than BLS24 when looking at the complexity of
Miller’s algorithm, the characteristic 𝑝, or the order 𝑟. At this security level,
BLS24 should be the better choice whatever the target application. Based on
these estimations, we choose to implement the two best pairing candidates at
the 128-bit security level: BLS24 and GMT8. Since BLS12 is still one of the best
candidates, we consider it as the reference curve at the 128-bit security level and
implement it. We also provide an implementation of BLS24 at 192-bit security.

In the following section, we present the parameters of the chosen curves and
provide some aspects of their implementation.

3.2 Pairing arithmetic and implementation aspects

All the selected curves (BLS12, BLS24, GMT8) have an even embedding degree.
In this case, the vertical lines computed in Algorithm 1 are elements of F𝑝𝑘/𝑑

and will be sent to 1 during the final exponentiation. Hence the computation of
denominators 𝑣2𝑄 or 𝑣𝑄+𝑇 can be omitted during Miller’s algorithm.

”High-level” operations such as extension fields or elliptic curve operations
can be computed with a succession of modular operations (or operations in the
base field: F𝑝). Searching for a cost-efficient hardware coprocessor to compute
these operations is a way to enhance the efficiency of pairing implementations.
Moreover, arithmetic used to implement pairings highly depends on the pairing
family. Hence, the sequence of modular operations also depends on the curve.
To ensure the flexibility of our design, we choose to focus on modular operations
to design a hardware accelerator suitable for all curves.

Common operations: multiplication and squaring in F𝒑2 . During pairing
computations, most of the operations are computed over the extension field
F𝑝𝑘/𝑑 . For the selected curves, F𝑝𝑘/𝑑 = F𝑝2 or F𝑝4 . An element 𝐴 of F𝑝𝑘 is a
polynomial of degree 𝑛, with 0 ≤ 𝑛 ≤ 𝑘 − 1 and with its coefficient in F𝑝. Let
𝑃 be an irreducible polynomial of degree 𝑘. Let 𝐴 and 𝐵 be two elements of
F𝑝𝑘 . The result 𝐶 of the multiplication of 𝐴 by 𝐵 is defined as the Euclidean
remainder of the polynomial 𝐴 × 𝐵 by the polynomial 𝑃. As previously said,
the curves selected in our study all have an embedding degree of 𝑘 = 2𝑖3 𝑗 . To
construct extension fields of these embedding degrees, the classical method is
to use extension field towers. For instance, F𝑝4 can be seen as an extension of
degree 2 of F𝑝2 . Algorithm 2 (resp. Algorithm 3) is the standard way to compute
a multiplication (resp. a square) in extension fields of degree 2.

Curves admitting a twist of degree 6. BLS curves are defined over F𝑝 by
𝐸 : 𝑦2 = 𝑥3 + 𝑏 and by a parameter 𝑢 ∈ Z such that the parameters 𝑝, 𝑟, 𝑡
are evaluations of some polynomials at 𝑢 (𝑝 = 𝑝(𝑢), 𝑟 = 𝑟 (𝑢), and 𝑡 = 𝑡 (𝑢)).

Hardware Implementations of Pairings at Updated Security Levels 7

In our implementations, we select the same parameters as in [4] which are 𝑢 =

−232+228+212 (resp. 𝑢 = −256−243+29−26) For BLS24 at 128-bit (resp. 192-bit)
security and 𝑢 = −277 + 250 + 233 for BLS12.

Algorithm 2 Multiplication in
F𝑝𝑘 = F𝑝𝑘/2 [𝑔], 𝑔2 = 𝑣, 𝑣 ∈ F𝑝𝑘/2

Input: 𝐴 = 𝑎0 + 𝑎1𝑔,
𝐵 = 𝑏0 + 𝑏1𝑔 ∈ F𝑝𝑘

Output: 𝑍 ← 𝐴𝐵 ∈ F𝑝𝑘

Cost: 3𝑀𝑝𝑘/2 + 5𝐴𝑝𝑘/2+1𝑀𝑢𝑙𝑣𝑝𝑘/2

Begin

1: 𝑡0 ← 𝑎0𝑏0; 𝑡1 ← 𝑎0 + 𝑎1
2: 𝑧0 ← 𝑏0 + 𝑏1; 𝑧1 ← 𝑎1𝑏1;
3: 𝑡1 ← 𝑡1𝑧0; 𝑧0 ← 𝑡0 − 𝑣𝑧1;
4: 𝑧1 ← 𝑡0 + 𝑧1; 𝑧1 ← 𝑧1 − 𝑡1;
5: return 𝑍 = 𝑧0 + 𝑧1𝑔;
End

Algorithm 3 Square in
F𝑝𝑘 = F𝑝𝑘/2 [𝑔], 𝑔2 = 𝑣, 𝑣 ∈ F𝑝𝑘/2

Input: 𝐴 = 𝑎0 + 𝑎1𝑔 ∈ F𝑝𝑘 ,

Output: 𝑍 ← 𝐴2 ∈ F𝑝𝑘

Cost: 2𝑀𝑝𝑘/2 + 4𝐴𝑝𝑘/2 + 1𝐷𝑏𝑙𝑝𝑘/2 +
2𝑀𝑢𝑙𝑣𝑝𝑘/2

Begin

1: 𝑧0 ← 𝑎0𝑎1; 𝑡0 ← 𝑎0 − 𝑎1;
2: 𝑡1 ← 𝑎0 − 𝑣𝑎1; 𝑡0 ← 𝑡0𝑡1;
3: 𝑧1 ← 2𝑧0; 𝑧0 ← 𝑡0 + (𝑣 + 1)𝑧0;
4: return 𝑍 = 𝑧0 + 𝑧1𝑔;
End

To our knowledge, the most efficient way to compute Miller’s algorithm on
these curves is to use mixed affine-projective coordinates along with the line
evaluations proposed in [12]. Then the characteristic 𝑝(𝑢), the order of the sub-
groups 𝑟 (𝑢) and the trace 𝑡 (𝑢) of 𝐸 are given by Eq. 2 for BLS12 and by Eq. 3
for BLS24.


𝑟 (𝑢) = 𝑢4 − 𝑢2 + 1,
𝑝(𝑢) = (𝑢 − 1)2𝑟/3 + 𝑢,
𝑡 (𝑢) = 𝑢 + 1.

(2)


𝑟 (𝑢) = 𝑢8 − 𝑢4 + 1,
𝑝(𝑢) = (𝑢 − 1)2𝑟/3 + 𝑢,
𝑡 (𝑢) = 𝑢 + 1.

(3)

The same extension fields and elliptic curves as in [26] are used for BLS12
(see Eq. 4) at 128-bit security and for BLS24 (see Eq. 5) at 192-bit security.
Multiplications and squares over F𝑝12 (resp. F𝑝24) are computed with formulae
given in [28] for cubic extension.



log 2 (𝑝) = 461,
log 2 (𝑟) = 308,
F𝑝2 = F𝑝 [𝑖], 𝑖2 = −1,
F𝑝4 = F𝑝2 [𝑣], 𝑣2 = 𝑖 + 1,
F𝑝12 = F𝑝2 [𝑔], 𝑔3 = 𝑣,

𝐸 (F𝑝) : 𝑦2 = 𝑥3 + 4,
𝐸 (F𝑝2) : 𝑦2 = 𝑥3 + 4(𝑖 + 1).

(4)



log 2 (𝑝) = 559,
log 2 (𝑟) = 449,
F𝑝2 = F𝑝 [𝑖], 𝑖2 = −1,
F𝑝4 = F𝑝2 [𝑣], 𝑣2 = 𝑖 + 1,
F𝑝24 = F𝑝4 [𝑔′], 𝑔′6 = 𝑣,

𝐸 (F𝑝) : 𝑦2 = 𝑥3 + 5,
𝐸 (F𝑝4) : 𝑦2 = 𝑥3 + 9(−𝑖 + 1)𝑣/2.

(5)

For BLS24 at 128-bit security, 𝑔′ can not be chosen such that 𝑔′12 = 𝑖 + 1 as
in Eq. 4 because this extension tower does not construct a field. Therefore, we
choose to define F𝑝24 and 𝐸 as described in Eq. 6 to simplify the expression of

𝐸 , and to ease the computation of Miller’s algorithm.

8 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy


log 2 (𝑝) = 318, F𝑝24 = F𝑝4 [𝑔′], 𝑔′6 = 𝑣,

log 2 (𝑟) = 256, 𝐸 (F𝑝) : 𝑦2 = 𝑥3 + 5,
F𝑝2 = F𝑝 [𝑖], 𝑖2 = −1, 𝐸 (F𝑝4) : 𝑦2 = 𝑥3 + 5/𝑣,
F𝑝4 = F𝑝2 [𝑣], 𝑣2 = 𝑖 + 3, 𝐸 (F𝑝4) : 𝑦2 = 𝑥3 + (−𝑖 + 3)𝑣/2.

(6)

The case of GMT8. The curves proposed in [18] differ from BLS12 or BLS24
curves as the modulo 𝑝 and the order of subgroups 𝑟 can not be represented
by polynomials in the variable 𝑢. Moreover, This curve admits a twist of degree
𝑑 = 4 and is generated using a variant of the Cocks-Pinch algorithm [11]. In [18],
they define F𝑝8 as F𝑝 [𝑔] with 𝑔8 = 5.

The most efficient formula to compute Miller’s algorithm for these kinds of
curves is the one proposed in [12] along with the mixed affine-”weight-(1, 2)
coordinates.” These coordinates represent points of 𝐸 by (𝑋 : 𝑌 : 𝑍), which
corresponds to the affine point (𝑥, 𝑦) where 𝑥 = 𝑋

𝑍
and 𝑦 = 𝑌

𝑍2 . The parameters
of the GMT8 curve at 128-bit security are given in Eq. 7.



𝑟 = 0𝑥 𝑓 𝑓 0060739𝑒18𝑑7594𝑎978𝑏0𝑎𝑏6𝑎𝑒4𝑐𝑒3𝑑 log 2 (𝑟) = 256,

𝑏 𝑓 𝑑52𝑎9𝑑00197603 𝑓 𝑓 𝑓 𝑑𝑓 0000000101, log 2 (𝑝) = 544,
𝑝 = 0𝑥𝑏𝑏9𝑑𝑓 𝑑549299 𝑓 1𝑐803𝑑𝑑𝑑5𝑑7𝑐05𝑒7𝑐𝑐03 F𝑝2 = F𝑝 [𝑣], 𝑣2 = 5,

73𝑑9𝑏1𝑎𝑐15𝑏47𝑎𝑎5𝑎𝑎84626 𝑓 33𝑒58 𝑓 𝑒6694 F𝑝4 = F𝑝2 [𝑢], 𝑢2 = 𝑣,

3943049031𝑎𝑒4𝑐𝑎1𝑑2719𝑏3𝑎84 𝑓 𝑎363𝑏𝑐𝑑2 F𝑝8 = F𝑝4 [𝑔], 𝑔2 = 𝑢,

539𝑎5𝑐𝑑02𝑐6 𝑓 4𝑏6𝑏645𝑎58𝑐1085𝑒14411, 𝐸 (F𝑝) : 𝑦2 = 𝑥3 + 2𝑥,
𝑡 = 264 − 254 + 237 + 232 − 4, 𝐸 (F𝑝2) : 𝑦2 = 𝑥3 + 2𝑣𝑥.

(7)

Summary of operations required by Miller’s algorithm. For curves 𝐸 :
𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 that admit a sextic or quartic twist, the complexity of Miller’s
algorithm of the selected curves is given in Table 2. For the sake of simplifica-
tion, 𝑝𝑘 (resp 𝑝𝑘/𝑑) is denoteted 𝑞 (resp. 𝑙). Since 𝑎 and 𝑏 are small coefficients,
Multiplication by 𝑎 or 𝑏 can be computed without modular multiplications. Pair-
ing implementations on BLS12 and BLS24 curves both rely on F𝑝2 = F𝑝 [𝑖] but
GMT8 relies on F𝑝2 = F𝑝 [𝑣]. The formulae used to compute operations on these
fields are similar since they only differ in the reduction step (see Algorithm 2
and Algorithm 3).

The dependency between operations required by Miller’s algorithm for the
selected curves is summarized in Fig. 2, where operations specific to each curve
are framed. Modular operations are the common points of selected curves even
if the size of the characteristic (𝑝) differs between BLS24, BLS12 and GMT8.

Table 2: The complexity of Miller’s step using twist
Operation Complexity

Twist Sextic twist Quartic twist

Doubling(𝐷) 𝑘/3.𝑀𝑝 + 3𝑀𝑙 + 5𝑆𝑙 + 𝑀𝑞 + 𝑆𝑞 𝑘/2.𝑀𝑝 + 3𝑀𝑙 + 6𝑆𝑙 + 𝑀𝑞 + 𝑆𝑞 + 𝑀𝑢𝑙𝑎𝑙
Mixed add(𝑀𝐴) 𝑘/3.𝑀𝑝 + 10𝑀𝑙 + 2𝑆𝑙 + 𝑀𝑞 + 𝑀𝑢𝑙𝑏𝑙 𝑘/2.𝑀𝑝 + 9𝑀𝑙 + 5𝑆𝑙 + 𝑀𝑞

Miller (total) log 2 (𝑢).𝐷 + 𝐻𝑊 (𝑢).𝑀𝐴

Hardware Implementations of Pairings at Updated Security Levels 9

Miller’s algorithm

Mixed affine-
”weight-(1, 2)”

Elliptic curve
E(Fp) and Ẽ(Fp2)

Square and Sparse
Mult. in Fp8

Operations in
Fp2 = Fp[v](v

2 = 5)

Mixed affine-
projective

Elliptic curve
E(Fp) and Ẽ(Fp4)

Square and Sparse
Mult. in Fp24

Elliptic curve
E(Fp) and Ẽ(Fp2)

Square and Sparse
Mult. in Fp12

Operations in
Fp4 = Fp[u](u

2 = i+1)
or

Fp4 = Fp[u](u
2 = i+3)

Operations in
Fp2 = Fp[i](i

2 = −1)

Modular operations

BLS24 BLS12 GMT8

Fig. 2: Operations during Miller’s algorithm selected curves

3.3 Implementation of the final exponentiation

The second part of a pairing calculation is computing Miller’s algorithm result

raised to the power of 𝑝𝑘−1
𝑟

. This is called the final exponentiation and its com-
plexity depends on different curve parameters. This section presents arithmetic
optimizations used to compute this step on selected curves.

Curves admitting a twist of degree 6. The decomposition of the final ex-
ponentiation is a well-known optimization of pairings. To our knowledge, the
most efficient is proposed in [16] for both BLS12 and BLS24. They used the
parametrization of modulo 𝑝 to provide fast and memory-efficient implementa-

tions. For BLS12, the ratio 𝑝12−1
𝑟

is split into an easy part (𝑝6 − 1) (𝑝2 + 1), and
a hard one (𝑝4 − 𝑝2 + 1)/𝑟. Then, the hard part is also decomposed as:
(𝑝4 − 𝑝2 + 1)/𝑟 = 𝜆0 + 𝜆1𝑝 + 𝜆2𝑝2 + 𝜆3𝑝3 and the 𝜆𝑖 are calculated according to

Eq. 8. The same methodology applies for BLS24. The ratio 𝑝24−1
𝑟

is split into an
easy part (𝑝12 − 1) (𝑝4 + 1) and a hard one (𝑝8 − 𝑝4 + 1)/𝑟. Then, the hard part is
decomposed into: (𝑝8−𝑝4−1)/𝑟 = 𝜆0+𝜆1𝑝+𝜆2𝑝2+𝜆3𝑝3+𝜆4𝑝4+𝜆5𝑝5+𝜆6𝑝6+𝜆7𝑝7
and the 𝜆𝑖 are calculated according to Eq. 9.

𝜆3 = 𝑢2 − 2𝑢 + 1,
𝜆2 = 𝜆3𝑢,

𝜆1 = 𝜆2𝑢 − 𝜆3,
𝜆0 = 𝜆1𝑢 + 3.

(8)


𝜆7 = 𝑢2 − 2𝑢 + 1, 𝜆3 = 𝜆4𝑢 − 𝜆7,
𝜆6 = 𝜆7𝑢, 𝜆2 = 𝜆3𝑢,

𝜆5 = 𝜆6𝑢, 𝜆1 = 𝜆2𝑢,

𝜆4 = 𝜆5𝑢, 𝜆0 = 𝜆1𝑢 + 3.

(9)

After the easy part of the final exponentiation, all computations are done in
cyclotomic subgroups of F𝑝𝑘 . This allows faster squaring formulae as the ones
presented in [17].

The case of GMT8. The curves presented in [18] are defined over a finite field
of characteristic 𝑝, where 𝑝 can not be represented as a polynomial evaluated
in 𝑢. Hence, formulae similar to Eq. 8 or Eq. 9 for BLS are not available. The

10 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy

method proposed by the authors of [18] consists in breaking down the final

exponentiation 𝑝8−1
𝑟

again into an easy part (𝑝4 − 1) and a hard part (𝑝4+1
𝑟

).
Then, the hard part is represented as in Eq. 10.

Once again, the second part of the final exponentiation is done in cyclotomic
subgroups. Since this curve admits a twist of even degree (𝑑 = 4), a square in
this subgroup costs approximately 2 squares in F𝑝4 .

𝑡0 = 𝑝 + 1 mod 𝑟,

𝑐 =
𝑝+1−𝑡0

𝑟
,

𝑝4+1
𝑟

=
(𝑡0−1)4+1

𝑟
+ (𝑝 + 𝑡0 − 1) (𝑝2 + (𝑡0 − 1)2)𝑐.

(10)

Let F𝑝8 and F𝑝4 be defined as in Eq. 7 and let 𝑎 = 𝑎0 + 𝑎1𝑔, with 𝑎 ∈ F𝑝8 ,
𝑎0, 𝑎1 ∈ F𝑝4 . A square in G𝜙2 (F𝑝4) is computed as follow:

𝑎2 = (𝑎20 + 𝑣𝑎21) + 2𝑎0𝑎1𝑔 = 𝑎20 + 𝑎21 + [(𝑎0 + 𝑎1)2 − (𝑎20 + 𝑎21)]𝑔. (11)

Following [17], 𝑎 ∈ G𝜙2 (F𝑝4) ⇒ 𝑎20 − 𝑣𝑎21 = 1. Thus, we can replace 𝑎21 in the

Eq. 11 by
1−𝑎2

0

𝑣
and compute 𝑎2 with the following formula:

𝑎2 = 2𝑎20 − 1 + [(𝑎0 + 𝑏0)2 − 𝑎20 − (𝑎20 − 1)/𝑣]𝑔. (12)

If 1
𝑣
can be computed without a modular inverse, then the cost of the above

formula is 2 squares in F𝑝4 and some additions.

However, this is not the case with the GMT8 curve as 1
𝑣
= 𝑣3

5 . We can pre-
compute this value but it increases the cost of Eq. 11 by at least a multiplication
of a F𝑝4 element by a F𝑝 element (which costs four 𝑀𝑝). To avoid these multi-
plications, we propose to replace 𝑎20 by 1+𝑣𝑎21 in Eq. 11. It leads to the following
formula which does not require any inversion:

𝑎2 = 2𝑣𝑎21 + 1 + [(𝑎0 + 𝑎1)2 − 1 − (𝑣 + 1)𝑎21]𝑔. (13)

Thus our formula is more suitable to compute squaring in the cyclotomic
subgroup for pairing on the GMT8 curve. 4

Summary of operations required by final exponentiation. Analogously
to the computation of Miller’s algorithm, we summarize the different operations
required during the final exponentiation in Fig. 3. Basic operations are the same
as in Miller’s algorithm but there are other operations such as efficient squaring
in the cyclotomic subgroups.

Modular operations form the basis of pairing arithmetic. The following sec-
tion, presents a lightweight coprocessor suitable to compute pairings on different
curves and at different security levels.

4 At the time of submitting this article, the proposed formula was new in the literature.
However, we later realized that it also appears in the RELIC project [1].

Hardware Implementations of Pairings at Updated Security Levels 11

Final exponentiation

Quartic twist

Operations in
Gφ2(p4)

Operations in
Fp8

Operations in
Fp2 = Fp[v](v2 = 5)

Sextic twist

Operations in
Gφ6(p4)

Operations in Fp24
Operations in

Gφ6(p2)

Operations in
Fp12

Operations in
Fp4 = Fp[u](u2 = i+1)

or
Fp4 = Fp[u](u2 = i+3)

Operations in
Fp2 = Fp[i](i2 = −1)

Modular operations

BLS24 BLS12 GMT8

Fig. 3: Operations during final exponentiation on selected curves

4 Hardware implementation of pairings

In this section, we present a lightweight coprocessor design to accelerate modular
operations and cut down the additional cost brought by neglected operations.
This coprocessor will be called the base field unit in the rest of the paper. Then,
we propose a hardware/software co-design architecture to compare pairings on
different curves at updated security levels.

4.1 Base field unit

As previously explained, the computation of pairings relies both on elliptic curves
and extension fields arithmetic. These arithmetics can be carried out ith se-
quences of operations in the base field F𝑝 (also called modular operations). The
required operations are modular multiplications, reductions, additions, subtrac-
tions, doubles, and divisions by 2. These operations are computed with the base
field unit. To limit the number of memory accesses, we implement elementary
operations on 64-bit integers. Finally, we choose to use single-port RAM to store
intermadiate values. This memory model is more likely to be suitable for light
use because its cost is lower compared to a dual port RAM.

Modular multiplication. Given its complexity compared to other operations
over the base field, modular multiplication is a key operation. The proposed
multiplier, described in Fig. 4, is a variant of the systolic architecture proposed
in [21]. It computes an alternative form of the Montgomery algorithm [31]:
the Multiple Word Radix-2 Montgomery Multiplication (MWR2-MM, see Al-
gorithm [33]). This architecture is composed of 𝑒 processing elementary units.
One unit (PE0 on Fig. 4) focuses on the computation of line 3 and the first
iteration at line 5 of Algorithm 4 (see below). Then, 𝑒 − 1 units (PE 𝑗 on Fig. 4)
compute other iterations 𝑗 at line 5.

12 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy

red

green

black

, control elements;

, storing element;

, other elements.

enable
reset

x y m

q

sIn
cOut

result

PE0

xi

•
•

Y0 M0

enable
reset

x y m

q

sInsOut
cOutcIn

result

PE1

•
•

xi−1 Y1 M1

enable
reset

x y m

q

sInsOut
cOutcIn

result

PE2

•
•

xi−2 Y2 M2

• • •

enable
reset

x y m

q

sOut
cOutcIn

result

PEe−1

•
•

Ye−1Me−1xi−e+1

Input Manager

datai

Shift register

Output Manager

datao

ctri

•

•

reseti
enablei •

•

Fig. 4: Hardware design dedicated to compute Modular multiplications

These units compute bitwise and logical operations on 64-bit integers such
as shift, addition or xor. Therefore it does not require any DSP in FPGA imple-
mentation. This design offers a good performance area trade-off. It distributes
the calculation over several small processing elements. Hence, the size of the
modulo has a limited impact on hardware frequency. All modular operations are
decomposed into 64-bit additions, subtractions or shifts.

Algorithm 4 MWR2-MM [33]

Input: 𝑋 =
∑𝑛−1
𝑖=0 𝑥𝑖 .2

𝑖 , 𝑌 =
∑𝑒−1
𝑖=0 𝑌 (𝑗) .2(𝑤. 𝑗) , 𝑝 =

∑𝑒−1
𝑗=0 𝑝 (𝑗) .2(𝑤. 𝑗)

Output: 𝑆 =
∑𝑒−1

𝑗=0 𝑆 𝑗 .2𝑤. 𝑗 = 𝑋.𝑌 .2−𝑛 mod (𝑛) with 0 ≤ 𝑆 ≤ 2.𝑝
Begin

1: 𝑆 = 0
2: for 𝑖 = 0, ..., 𝑛 − 1 do

3: 𝑞𝑖 = (𝑥𝑖 .𝑌 (0)0) ⊕ 𝑆
(0)
0

4: (𝐶 (1) , 𝑆 (0)) = 𝑥𝑖 .𝑌
(0) + 𝑞𝑖 .𝑝 (0) + 𝑆 (0)

5: for 𝑗 = 1, ..., 𝑒 do
6: (𝐶 (𝑗+1) , 𝑆 (𝑗)) = 𝐶 (𝑗) + 𝑥𝑖 .𝑌 (𝑗) + 𝑞𝑖 .𝑝 (𝑗) + 𝑆 (𝑗)

7: 𝑆 (𝑗−1) = (𝑆 (𝑗)0 , 𝑆
𝑗−1
𝑤−1..1)

8: end for
9: 𝑆 (𝑒) = 0
10: end for
11: return 𝑆

Hardware Implementations of Pairings at Updated Security Levels 13

Additional operations. The dedicated component presented in Fig. 5 is de-
signed to compute additional operations (addition, subtraction, double, division
by 2 and reduction). As for modular multiplications, the modulo is loaded once
prior to any computation. It is stored on a cyclic register (CyclReg on Fig. 5).
Two 64-bit adder-subtractors (Add and Red) are used. One for the addition
(or subtraction) and the other to compute the modular reduction. The two pos-
sible results are stored in two dedicated registers RegAdd and RegRed. These
registers allow us to chain operations. Thus, we restrict the quantity of memory
access to the minimum: load operands and store the final result. Then, the com-
ponent Div is used to compute divisions by 2. The computation of a modular
double is considered as a computation of a special modular addition. In this case,
the loading of the operand is faster than in classical addition and this enables
computing modular doubles faster than modular additions.

red

green

black

, control elements;

, storing element;

, other elements.
cIn

sub

result

cOut

dataA dataB

Add

cIn

sub

result

cOut

dataA dataB

Red

enable

reset

load

dataIn

dataOut

CyclReg

enable
select

reset
dataIn

dataOut

RegAdd

enable
select

reset
dataIn

dataOut

RegRed

cRed

sub

result

cAdd

sel

a

div

selectRes

sel1

data0 data1

dataOut
1

enable

reset

dataIn

result

Div

sel1

data0 data1

dataOut
2

/ 64

/
64

/ 64

/ 64 / 64

/ 64

reset p

enable p load p

reset n
select word w r /

2× 3

div2

reset div2

sub

dataload/
64/ 64 / 64 / 64

/ 64

sel add

result add

/ 64

Fig. 5: Hardware design dedicated to compute additional operations

14 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy

Similarly, the modular division by two is a special subtraction. Our adder
computes both 𝐴 − 0 and 𝐴 + 𝑝, and then, depending on the parity of 𝐴, the
results will either be 𝐴/2 or (𝐴+ 𝑝)/2. Once again, it enables computing modular
divisions by two faster than modular subtractions. The number of clock cycles
required by each operation in F𝑝 is expressed in Table 3. The implementation of
doubles and divisions by 2 operations allows saving 𝑒 clock cycles for these op-
erations. Implementation of additional operations (addition, double,...) has less
impact on design performances than the implementation of modular multiplica-
tion. However, their costs can not be neglected since they are called about 6 times
more than multiplications. As an example for GMT8 curves, when log 2 (𝑝) = 544
and 𝑒 = 9, the computation time of a modular multiplication is around 18 (resp.
25) times longer than a modular addition (resp. double). Additional operations
represent 25% of pairing computation times which is significant.

Table 3: Costs of base field operations
Operation Number of clock cycles

Modular multiplication 𝑛 + 3⌈𝑛/64⌉ + 4
Modular reduction 2⌈𝑛/64⌉ + 6

Modular addition/subtraction 3⌈𝑛/64⌉ + 6
Modular double 2⌈𝑛/64⌉ + 6

Modular division by 2 2⌈𝑛/64⌉ + 7

Proposed hardware/software architecture for prototyping purposes.
The multiplier and the custom adder are both controlled by a Finite State Ma-
chine (Scheduler in Fig. 6). This scheduler allows loading operands from the
dedicated RAM (CryptoRAM in Fig. 6), launching a modular operation, and
saving the final result into the CryptoRAM. The sequence of modular operations
can be fixed for a specific pairing implementation, but we choose to maintain
flexibility in our design and use a CPU instead. It allows implementing different
pairings on the same component. Macro instructions are defined to pilot our
base field unit which is connected to the CPU with an AXI interface (Advanced
eXtensible Interface). This interface is chosen for its compatibility with a wide
variety of processors (including ARM and RISC-V CPUs). To execute complex
operations, the CPU must control the base field unit and the cryptoRAM, again
to load operands, compute selected operations and save the results.

The chosen CPU for prototyping purposes is the MicroBlaze unit provided
by Vivado tools. It is based on a 32-bit architecture. However, it can be easily re-
placed by any processor. 32-bit instructions of the form: 𝑖𝑛𝑠 = {@𝐴,@𝐵,@𝑍, 𝐶𝑜𝑑𝑒}
are used by the CPU to pilot the base field unit. Having 32-bit CPU does not
hinder the control of our 64-bit base field unit.

As shown in Fig. 6, instructions are sent by the CPU to the base field unit
through the AXI. A decoder (Ins-decoder) stores addresses of perands (@𝐴,@𝐵),
address of the result (@𝑍), and selects the base field operation corresponding to
𝐶𝑜𝑑𝑒. Then, the Scheduler controls the CryptoRAM and either the multiplier
or the custom adder computes this operation. In this way, a modular operation
can be launched with a single instruction.

Hardware Implementations of Pairings at Updated Security Levels 15

High-level unit
ROMRAM

Program

CPU

AXI

Base fields unit

UART Timer

External
communication

FIFO

Ins-decoder

Scheduler

AdderMultiplier

CryptoRAM

instruction StateData

Fig. 6: Proposed hardware/software architecture

Finally, a FIFO stacks several instructions to mask the cost of sending in-
structions to the base field unit. The CPU can read and write into the Cryp-
toRAM to load operands and to read the result of the computation. Instructions
are sent from the CPU to the coprocessor through the AXI as shown in Fig. 6.
The CPU also controls a timer to monitor coprocessor computation times and
a Universal Asynchronous Receiver Transmitter (UART) component to allow
external communication.

Finally, the MicroBlaze CPU runs a software program in C to compute High-
level operations. The objective of this design is to minimize the impact of ad-
ditional operations on implementation performances. Thus, the base field unit
is built to be able to launch additional operations while performing modular
multiplications.

Common optimization: parallelized multiplication and square in F𝒑2 .
The selected curves all rely on F𝑝2 = F𝑝 [𝑣] arithmetic. In Section 3, F𝑝2 = F𝑝 [𝑣],
where 𝑣 is defined as 𝑣 = −1 for BLS12 and BLS24 curves and 𝑣 = 5 for GMT8
curves. Multiplication by 5 can be computed with two doubles and one addition.
Then, multiplications by 𝑣 can also be parallelized in Algorithm 2 and Algo-
rithm 3. Four additions and one multiplication by 𝑣 can be computed in parallel
during multiplications and three additions, one double and two multiplications
by 𝑣 during squaring.

Additional operations that can be computed in parallel are written with red
letters in Algorithm 5 and Algorithm 6. Optimized multiplications and squares
in F𝑝2 cut the computation time by 10% with our architecture.

We manage to parallelize more additional operations during multiplications
and squares in F𝑝4 . The total gain brought by our parallel implementation is
approximately 12% for BLS12 and 15% for GMT8 and BLS24 curves.

16 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy

Algorithm 5 Optimized multiplica-
tion in F𝑝2 = F𝑝 [𝑔], 𝑔2 = 𝑣, 𝑣 ∈ F𝑝
Input: 𝐴 = 𝑎0 + 𝑎1𝑔, 𝐵 = 𝑏0 + 𝑏1𝑔 ∈ F𝑝2

Output: 𝑍 ← 𝐴𝐵 ∈ F𝑝2

Cost: 3𝑀𝑝2 + 1𝐴𝑝2

Begin

1: 𝑡0 ← 𝑎0𝑏0; 𝒕1 ← 𝒂0 + 𝒂1 𝒛0 ← 𝒃0 + 𝒃1;
2: 𝑧1 ← 𝑎1𝑏1; 𝑡1 ← 𝑡1𝑧0; 𝒛0 ← 𝒕0 − 𝒗𝒛1;
3: 𝒛1 ← 𝒕0 + 𝒛1; 𝑧1 ← 𝑧1 − 𝑡1;
4: return 𝑍 = 𝑧0 + 𝑧1𝑔;
End

Algorithm 6 Optimized square
in F𝑝2 = F𝑝 [𝑔], 𝑔2 = 𝑣, 𝑣 ∈ F𝑝
Input: 𝐴 = 𝑎0 + 𝑎1𝑔 ∈ F𝑝2 ,

Output: 𝑍 ← 𝐴2 ∈ F𝑝2

Cost: 2𝑀𝑝 + 1𝐴𝑝

Begin

1: 𝑧0 ← 𝑎0𝑎1; 𝒕0 ← 𝒂0 − 𝒂1;
2: 𝒕1 ← 𝒂0 − 𝒗𝒂1; 𝑡0 ← 𝑡0𝑡1;
3: 𝒛1 ← 2𝒛0; 𝑧0 ← 𝑡0 + (𝒗 + 1)𝒛0;
4: return 𝑍 = 𝑧0 + 𝑧1𝑔;
End

Verification and test. The procedure presented in Fig. 7 is used to ensure the
correctness of our implementation. First, we use Magma calculator software [10]
as a reference implementation to generate 𝑃 (resp. 𝑄), a generator of G1 (resp.
G2). Then, a Python script computes the test vector {𝑃, [𝛼]𝑃,𝑄, [𝛼]𝑄} with
𝛼 a random element. Subsequently, our design computes both 𝑒(𝑃, [𝛼]𝑄) and
𝑒([𝛼]𝑃,𝑄). Finally, the CPU sends these two values back to the desktop which
checks for the equality of: 𝑒(𝑃, [𝛼]𝑄) = 𝑒([𝛼]𝑃,𝑄). Verifying the pairing bilin-
earity ensures the correctness of our implementations. This method is used to
test our design at each level of the development, from operations on the base
field to the entire pairing.

4.2 Implementation results

The proposed design is coded in VHDL and implemented on a Kintex-7. Our
base field unit is packaged into a custom IP and integrated into a System on
Chip with a MicroBlaze CPU. The time×area metric is chosen to estimate the
overall performance of the hardware component. This value gives a complete
picture since it does not only take into account the estimated area but also the
amount of performance provided. It gives a fairer comparison than the classical
one using the equivalent gate metrics. The obtained performances are presented
in Table 4 for the old 128-bit and for the updated 128-bit and 192-bit security
levels.

In [35], authors build a highly parallel architecture to design a fast and
energy-efficient pairing unit for BN curves at the old 128-bit security level.
However, their design required thousands of slices and several Digital Signal
Processing (DSP) units and would be difficult to fit in lightweight designs.

To our knowledge, the fastest pairing architecture at the old 128-bit security
level is the one proposed in [37]. To maximize the benefit of parallelization, the
authors use several triple-port RAMs. This memory requires arround four times
the area required by classical simple-port ones. As a result, this architecture
could also barely fit in lightweight designs.

Hardware Implementations of Pairings at Updated Security Levels 17

Desktop MicroBlaze CoprocessorSerial AXI

1: Generate P,Q

2: Generate α ∈ Fp

3: Compute {[α]P, [α]Q}
4: Send test vectors

10 : Receive results

11: Check: e(P, [α]Q) = e([α]P,Q)

5: Receive test vectors

6: Write in cryptoRAM

7: Send instructions

8: Read in cryptoRAM

9: Send:{e(P, [α]Q), e([α]P,Q)}

7.1: Compute e(P, [α]Q),e([α]P,Q)

7.2: Send results back

Fig. 7: Procedure for a test sequence with our ALU

Authors in [32] propose a lightweight hardware accelerator for modular mul-
tiplication and pilot it with a Cortex A9 CPU to compute pairings on BN curves
at the old 128-bit security level. They also demonstrate that adding dedicated
hardware to compute operations in the base field can decrease both time and en-
ergy required to compute a pairing. Our BLS12-381 implementation has a better
time×area than previous hardware implementations on BN curves of [32,35].

Table 4: Performances comparison of pairing hardware implementations
Security Ref. Curves Platform Area(slices) DSP Time(ms) time×area

99.7-bit
[37]

BN-254
Virtex-6 5237 64 0.41 2147

[35] Virtex-7 28400 128 3.43 97412
[32] Zynq-7020 598 0 134 80132

120.7-bit This work BLS12-381 Kintex-7 1006 0 36.14 36357

128-bit This work

BLS12-460
Kintex-7 1223 0 48.91 59817
Virtex-7 1235 0 48.91 60404
Virtex-6 1446 0 65.21 94294

BLS24-318
Kintex-7 925 0 64.78 59922
Virtex-7 922 0 64.78 59727
Virtex-6 1156 0 86.37 99844

GMT8-544
Kintex-7 1325 0 42.71 56591
Virtex-7 1463 0 42.71 62485
Virtex-6 1654 0 56.94 94195

192-bit This work BLS24-518 Kintex-7 1325 0 184.23 244105

For the sake of fair comparison with future work, we implement our ALU on
a Virtex-7 and a Virtex-6 FPGA. These platforms are chosen because they have
been widely used in previous work. FPGAs are built with Configurable Logic
Blocks (CLB), and 7-series FPGA such as Kintex-7 or Virtex-7, and Virtex-6
FPGA use identical CLB. Each CLB contains two slices and each slice con-
tains four 6-inputs Look Up Table (LUT) and four flip-flops. According to Xil-
inx, the main difference is that the 7-series FPGAs have more interconnecting
routing resources compared to Virtex-6 FPGA. This explains the difference be-
tween our design performance on the 7-series and on the Virtex-6 FPGA. The
last version of the Xilinx ISE design suite (14.7) is used to implement our copro-
cessor in Virtex-6. The results presented in Table 4 are given as an indication
since the test and development are done on a Kintex-7 FPGA. Virtex-7 imple-

18 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy

mentation is running at 200 MHz and Virtex-6 at 150 MHz. The difference in
time×area between GMT8 and BLS24 is limited to 5% which is not enough to
discard a curve. Furthermore, pairings at actual security levels require a con-
sequent amount of memory. With our implementation, GMT8 requires 5976kB,
BLS12 7040kB and BLS24 9920kB respectively. Since memory is often the criti-
cal resource in constrained devices, GMT8 may be the appropriate choice at the
updated 128-bit security level.

Table 4 also shows that the curve ranking in terms of time×area, not only
differs from estimations given in [4], but also differs from one platform to another.
Therefore, it becomes interesting to choose the curve according to the desired
application and platform.

5 Conclusion and future work

The Kim and Barbulescu attack created a new paradigm as BN curves are no
longer undisputed pairing champions. Authors of [4] and [18] have studied new
curves. The consequences are that any dedicated hardware implementation ought
to support multiple arithmetics to maximize flexibility. Pairing complexity es-
timates only take into account the complexity of modular multiplications. This
paper shows that neglected operations such as modular additions have also a sig-
nificant impact on implementation performances since they represent 25% of the
overall computation time in our architecture. Based on the best curve candidates
for implementations, we presented a flexible hardware architecture to support all
of them. The proposed lightweight hardware is designed to accelerate modular
operations. It has a reconfigurable modulus which enables the support of differ-
ent curves and allows parallel computing during multiplication. This improves
performance by approximately 15% decreasing the cost of additional operations
to consider only multiplications.

To the best of our knowledge, this paper presents the first hardware im-
plementation of pairings at the updated 128-bit and 192-bit security levels as
proposed in [4] and in [18]. Moreover, the proposed implementations provide
promising performances compared to previous work on lightweight implementa-
tions since our time×area product is three times better than the one presented
in [32]. Our different FPGA porting results also provide evidence that the best
curves have similar complexity at the updated 128-bit security level. It shows
that there is no optimal choice of pairings at the 128-bit security level. With our
architecture, the GMT8 curve seems to provide the best time and time×area per-
formances. But it also requires a bigger coprocessor than for BLS24 or BLS12.
On the other hand, BLS24 requires much more memory than GMT8. Future
work could consider other promising curves such as KSS16, DCC15 or other
curves proposed in [18] and evaluate their performance on classical protocols.

Hardware Implementations of Pairings at Updated Security Levels 19

References

1. Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is an
Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic

2. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López-Hernández, J.C.:
Faster explicit formulas for computing pairings over ordinary curves. In: EURO-
CRYPT. Lecture Notes in Computer Science, vol. 6632, pp. 48–68. Springer (2011)

3. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Journal
of Cryptology (2018), https://hal.archives-ouvertes.fr/hal-01534101

4. Barbulescu, R., El Mrabet, N., Ghammam, L.: A taxonomy of pairings, their se-
curity, their complexity. IACR Cryptol. ePrint Arch. 2019, 485 (2019)

5. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: SCN. Lecture Notes in Computer Science, vol. 2576, pp.
257–267. Springer (2002)

6. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 3897,
pp. 319–331. Springer (2005)

7. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security Symposium. pp.
781–796. USENIX Association (2014)

8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) Advances in Cryptology — CRYPTO 2001. pp. 213–229. Springer
Berlin Heidelberg, Berlin, Heidelberg (2001)

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) Advances in Cryptology — ASIACRYPT 2001. pp. 514–532.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

10. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system.
I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997).
https://doi.org/10.1006/jsco.1996.0125, http://dx.doi.org/10.1006/jsco.

1996.0125, computational algebra and number theory (London, 1993)
11. Cocks, C., Pinch, R.: Identity-based cryptosystems based on the Weil pairing

(2001)
12. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with

high-degree twists. In: Public Key Cryptography. Lecture Notes in Computer Sci-
ence, vol. 6056, pp. 224–242. Springer (2010)

13. Duan, P., Cui, S., Chan, C.: Special polynomial families for generating more
suitable elliptic curves for pairing-based cryptosystems. IACR Cryptology ePrint
Archive 2005, 342 (01 2005)

14. El Mrabet, N., Guillermin, N., Ionica, S.: A study of pairing computation for elliptic
curves with embedding degree 15. IACR Cryptol. ePrint Arch. 2009, 370 (2009)

15. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptol. 23(2), 224–280 (2010)

16. Ghammam, L., Fouotsa, E.: Improving the computation of the optimal Ate pairing
for a high security level. Journal of Applied Mathematics and Computing 59 (02
2018). https://doi.org/10.1007/s12190-018-1167-y

17. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree
extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) Public Key Cryptography –
PKC 2010. pp. 209–223. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

18. Guillevic, A., Masson, S., Thomé, E.: Cocks-Pinch curves of embedding degrees
five to eight and optimal Ate pairing computation. Cryptology ePrint Archive,
Report 2019/431 (2019), https://eprint.iacr.org/2019/431

https://github.com/relic-toolkit/relic
https://hal.archives-ouvertes.fr/hal-01534101
https://doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1007/s12190-018-1167-y
https://eprint.iacr.org/2019/431

20 A. Lavice, N. El Mrabet, A. Berzati, J.B. Rigaud and J. Proy

19. Hess, F., Smart, N., Vercauteren, F.: The Eta pairing revisited. Cryptology ePrint
Archive, Report 2006/110 (2006), https://eprint.iacr.org/2006/110

20. Hess, F.: Pairing lattices. Cryptology ePrint Archive, Report 2008/125 (2008)
21. Huang, M., Gaj, K., El-Ghazawi, T.: New hardware architectures for Montgomery

modular multiplication algorithm. IEEE Transactions on Computers 60(7), 923–
936 (July 2011). https://doi.org/10.1109/TC.2010.247

22. John, T.: Duality theorems in Galois cohomology over number fields. International
Congress of Mathematicians Stockholm 1962, Djursholm (1963), computational
algebra and number theory (London, 1993)

23. Joux, A.: A one round protocol for tripartite diffie-hellman. ANTS-IV : Proceedings
of the 4th International Symposium on Algorithmic Number Theory, pages 385394,
London, UK (2000)

24. Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-
friendly elliptic curves using elements in the cyclotomic field. In: Pairing. Lecture
Notes in Computer Science, vol. 5209, pp. 126–135. Springer (2008)

25. Karabina, K.: Squaring in cyclotomic subgroups. Cryptology ePrint Archive, Re-
port 2010/542 (2010), https://eprint.iacr.org/2010/542

26. Khandaker, M.A.A., Nanjo, Y., Ghammam, L., Duquesne, S., Nogami, Y., Kodera,
Y.: Efficient optimal Ate pairing at 128-bit security level. In: Patra, A., Smart,
N.P. (eds.) Progress in Cryptology – INDOCRYPT 2017. pp. 186–205. Springer
International Publishing, Cham (2017)

27. Kim, T., Barbulescu, R.: Extended tower number field sieve: A new complexity for
the medium prime case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 543–571. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

28. Knuth, D.E.: The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamen-
tal Algorithms. Addison Wesley Longman Publishing Co., Inc., USA (1997)

29. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding. pp. 13–36. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

30. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4),
235–261 (Sep 2004). https://doi.org/10.1007/s00145-004-0315-8

31. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

32. Salman, A., Diehl, W., Kaps, J.: A light-weight hardware/software co-design for
pairing-based cryptography with low power and energy consumption. In: 2017 In-
ternational Conference on Field Programmable Technology (ICFPT). pp. 235–238
(2017). https://doi.org/10.1109/FPT.2017.8280149

33. Tenca, A., Koc, C.: A scalable architecture for Montgomery multiplication. In:
Proc. First Int’l Workshop Cryptographic Hardware and Embedded Systems
(CHES ’99), pp. 94-108. pp. 94–108 (01 1999)

34. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information Theory
56(1), 455–461 (Jan 2010). https://doi.org/10.1109/TIT.2009.2034881

35. Wang, A.T., Guo, B.W., Wei, C.J.: Highly-parallel hardware implementation of
optimal Ate pairing over Barreto-Naehrig curves. Integration 64, 13 – 21 (2019)

36. Xiong, X., Wong, D., Deng, X.: Tinypairing: A fast and lightweight pairing-based
cryptographic library for wireless sensor networks. pp. 1 – 6 (05 2010)

37. Yao, G.X., Fan, J., Cheung, R.C.C., Verbauwhede, I.: Faster pairing coproces-
sor architecture. In: Abdalla, M., Lange, T. (eds.) Pairing-Based Cryptography –
Pairing 2012. pp. 160–176. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

38. Zhang, X., Lin, D.: Analysis of optimum pairing products at high security levels
(12 2012). https://doi.org/10.1007/978-3-642-34931-7 24

https://eprint.iacr.org/2006/110
https://doi.org/10.1109/TC.2010.247
https://eprint.iacr.org/2010/542
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1109/FPT.2017.8280149
https://doi.org/10.1109/TIT.2009.2034881
https://doi.org/10.1007/978-3-642-34931-7_24

	Hardware Implementations of Pairings at Updated Security Levels

