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Abstract. Profiled side-channel attacks represent the most powerful
category of side-channel attacks. There, the attacker has access to a
clone device to profile its leaking behavior. Additionally, it is common
to consider the attacker unbounded in power to allow the worst-case se-
curity analysis. This paper starts with a different premise where we are
interested in the minimum power that the attacker requires to conduct a
successful attack. We propose a new framework for profiled side-channel
analysis that we call the Efficient Attacker Framework. With it, we re-
quire attacks to be as powerful as possible, but we also provide a setting
that inherently allows a more objective analysis among attacks. To con-
firm our theoretical results, we provide an experimental evaluation of our
framework in the context of deep learning-based side-channel analysis.

1 Introduction

Side-channel analysis (SCA) is a threat that exploits weaknesses in physical
implementations of cryptographic algorithms rather than the algorithms them-
selves [1]. Profiled SCA performs the worst-case security analysis by considering
the most powerful side-channel attacker with access to an open (the keys can
be chosen or are known by the attacker) clone device. Additionally, the SCA
community considers an attacker in the setting with unbounded power, e.g., the
attacker can obtain any number of profiling or attack traces and has unlimited
computational power.

In the last two decades, besides template attack and its variants [2, 3], the
SCA community started using machine learning to conduct profiled attacks.
Those results proved to be highly competitive compared to template attack,
and, in many scenarios, machine learning methods surpassed template attack
performance [4–6]. Unfortunately, in these scenarios, the experimental setup is
often arbitrarily limited, and no clear guidelines on the limitation of profiling
traces or the hyperparameter tuning phase are offered or discussed.

More recently, the SCA community started to experiment with deep learning
where such methods bested both template attack and other machine learning
methods [7–9]. Again, no clear guidelines on the number of profiling traces were
given or investigated. Simultaneously, the researchers started to give more at-
tention to the hyperparameter tuning, but the results are still far from defini-
tive ones, see, e.g., [10, 11]. Consequently, there is an evident lack of evaluation
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guidelines/frameworks in the context of profiled analysis to understand various
attacks’ performance or how they compare. This gap is highly important as
state-of-the-art results with deep learning successfully and efficiently break all
publicly available targets.

This paper aims to extend the currently used evaluation techniques to a
framework that determines the least powerful attacker that can still reveal se-
cret information. To achieve this, we evaluate the limit on 1) the number of
measurements the attacker can collect in the training phase and 2) the number
of hyperparameter tuning experiments. It could sound counter-intuitive to make
such limitations as one can argue there is no reason why an attacker cannot col-
lect a large number of measurements or run hyperparameter tuning as long as
needed (or select an algorithm that has no hyperparameters to tune). We claim
that there are several reasons for that:

1. By considering a scenario where an unlimited number of measurements are
available, we “allow” less powerful attacks. More precisely, the attacker can
use a larger set of measurements to compensate for less powerful profiling
models.

2. By considering a scenario where a computationally unbounded attacker runs
the analysis, one assumes the attacker can always find the best possible
attack while that seldom happens in practice.

3. The target device may include a countermeasure that limits the number of
exploitable measurements. The experimental setup can have constraints that
limit the allowed length of the hyperparameter tuning phase.

4. Although taking measurements or running more experiments is “cheap”,
there is always a point where this is more effort than the target/secret is
worth.

5. Having more measurements does not guarantee better results, especially in
realistic scenarios. Consider the case where one device is used for profiling
and the other for the attack, i.e., the portability setting (a realistic case
that is usually simplified in research works where only a single device is
used [7–9,12]). Then, adding more measurements to the profiling phase can
cause machine learning methods to overfit 4 [12]. The same issue can happen
due to a too detailed tuning phase.

As far as we know, there are no previous works considering profiling and
realistic attacker evaluation frameworks. When the attacker is restricted, it is
usually set as one of several tested scenarios (e.g., testing a classifier’s perfor-
mance with specific hyperparameters or a different number of measurements in
the training phase). Alternatively, it is motivated by some limitations in the data
acquisition or evaluation process.

In this paper, we present the following main contributions:

1. We propose a new framework for profiled side-channel analysis where we
evaluate the minimum power of an attacker in the profiling phase to still
be successful in the testing phase. We also introduce a new threat model

4 Overfitting occurs when the learning model learns the data too well and cannot
adapt to previously unseen data.
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that differs from a common one by considering a more realistic attacker.
The attacker in our threat model is still powerful from the computational
perspective and the perspective of the learning models that can be built.
In other words, we move from the problem of simply breaking the target
(which is well-explored and with strong results, especially when consider-
ing deep learning) to a problem where we break the target with a minimal
number of measurements and minimal hyperparameter tuning. We consider
our framework to be intuitive and easily adaptable to a plethora of realistic
scenarios.

2. We strengthen our results with an experimental evaluation conducted on
publicly available datasets protected with masking countermeasures. We ex-
plore two commonly used leakage models and two neural network types.

We will make public our source code upon the acceptance of the paper.

2 Existing Frameworks for Side-channel Evaluation

2.1 Scientific Metrics

The most common evaluation metrics in the side-channel analysis are success
rate (SR) and guessing entropy (GE) [13]. GE states the average number of key
candidates an adversary needs to test to reveal the secret key after conducting
a side-channel analysis. In particular, given Q traces in the attack phase, an
attack outputs a key guessing vector g = [g1, g2, . . . , g|K|] in decreasing order of
probability with |K| being the size of the keyspace. So, g1 is the most likely and
g|K| the least likely key candidate. The guessing entropy is the average position
of k∗a in g over multiple experiments. The success rate is defined as the average
empirical probability that g1 equals the secret key k∗a.

In practice, one may consider leakage models Y (·) that are bijective functions.
Thus, each output probability calculated from the classifiers for Y (k) directly
relates to one key candidate k. When Y (·) is not bijective, several key candidates
k may get assigned with the same output probabilities, which is why a single
trace attack (Q = 1) may not be possible in the case of non-bijective leakage
models. Further, to calculate the key guessing vector g over Q traces, the (log-
)likelihood principle is used.

Remark 1. SR and GE are used for practical evaluations in both non-profiling
and profiling scenarios. Typically, they are given over a range of traces used in
the attack phase (i.e., for q = 1, 2, . . . , Q). If these metrics are used in profiling
scenarios, there are no clear guidelines for evaluating attacks. Most of the time,
the number of training samples N in the profiling stage is (arbitrary) fixed,
making comparisons and meaningful conclusions on profiled side-channel attacks
or resistance of implementations hard and unreliable in most scenarios.

Whitnall and Oswald introduced a more theoretical framework that aims at
comparing distinguishing powers instead of estimators of attacks [14,15]. Accord-
ingly, the size of the profiling dataset N does not play any role in this framework.
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The most popular metrics of the framework are the relative and absolute distin-
guishing margins in which the correct key’s output score and the value for the
highest-ranked alternative are compared.

Another approach to compare side-channel attacks uses closed-form expres-
sions of distinguishers [16], enabling conclusions about distinguishers without
the requirement of actual measurements. Unfortunately, only a few closed-form
expressions of distinguishers have been achieved so far.

For masking countermeasures, Duc et al. defined information-theoretical bounds
on the success rate depending on the number of measurements, shares, and inde-
pendent on the concrete estimated side-channel attack [17]. In [18], the authors
provided information-theoretic tools to bound the model errors in side-channel
evaluations concerning the choice of the leakage model.

Typically, to assess the performance of the machine learning classifiers, ac-
curacy is used [19]. A detailed comparison between accuracy (but also other
machine learning metrics like precision, recall, F1) and guessing entropy/success
rate is given in [6], which details that such metrics may not always be a proper
choice for assessing the attack performance in side-channel analysis.

2.2 Practical Evaluation Testing

While most of these previous metrics are relevant in some contexts and scenarios,
a different approach is required to make research statements in the context of
profiled attacks. This issue becomes even more evident when looking at practical
evaluation used in standardization processes. In practice, there are two main
practical schemes:
1. Test-based schemes, such as NIST FIPS 140 [20] and its application to the

mitigation of other attacks (part of Appendix F, in particular, non-invasive
attacks ISO/IEC 17825 [21]).

2. Evaluation-based schemes, such as Common Criteria (CC, ISO/IEC 15408 [22]).
Interestingly, both FIPS 140 and CC pay attention to the limited amount of

resources spent. When considering FIPS 140 / ISO/IEC 17825, the requirement
is more on the attack traces, but regarding CC, the evaluation of attacks is con-
sidered under two phases: identification (which matches with the training phase
in the context of profiled side-channel attacks) and exploitation (which matches
with the attack phase in the context of profiled side-channel attacks). Strictly
speaking, the distinction is for CC version 2, but it still implicitly holds for
version 3. Several factors are considered for the evaluations of attacks, namely:
elapsed time, expertise, knowledge of the Target Of Evaluation (TOE), access to
TOE, equipment, open samples. The first factor, elapsed time, directly connects
with the acquisition of traces in the profiling phase and the hyperparameter
tuning. Indeed, according to the guidance “Application of Attack Potential to
Smartcards” [23], the score is considered:

– 0 if the profiling of the traces can be performed in less than one hour,
– 1 if the profiling of the traces can be performed in less than one day,
– 2 if the profiling of the traces can be performed in less than one week,
– 3 if the profiling of the traces can be performed in less than one month,
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– 5 if the profiling of the traces cannot be performed in less than one month.

Accordingly, we see that the CC guidance favors attacks, which are realized with
as little profiling effort as possible. This profiling effort can go in the direction
of the number of required measurements, the number of experiments in the
hyperparameter tuning phase, or both.

2.3 Practical Observations and Effects of Aging

Besides overfitting (see details in Section 1), another difficulty for profiled at-
tacks is that the collection of side-channel traces becomes less reliable after a
long period. Some trend noise must be added to the side-channel traces (due to
temperature and environmental conditions evolution over time). For instance,
this has been characterized by Heuser et al. in [24], where it is proven that trend
noise drastically impedes SCA. Similar findings are confirmed by Cao et al. [25].
Efficient distinguishing situations, such as that depicted in Figure 1 shows that
the best number of traces to estimate a distinguisher is not always “the maxi-
mal”. This is illustrated on a simple “difference of means” attack representing
side-channel attack on DPA contest 4.2 traces [26] (the second implementation
(v4.2) is based on an improved version of the first version - v4).

Large
distinguishing

margin

Smaller
distinguishing

margin

Fig. 1: Difference of Means (DoM) distinguisher estimation for all key bytes (the
correct one and all incorrect ones).



6

3 The Efficient Attacker Framework

3.1 Threat Model

The adversary has access to a clone device running the target cryptographic
algorithm. This device can be queried with a known key and plaintext while
corresponding leakage measurement is stored. Commonly, the adversary can have
infinite queries to characterize a precise profiling model. There are no limits
on how many experiments he can do to find such a profiling model. Next, the
adversary queries the attack device with known plaintext to obtain the unknown
key. The corresponding side-channel leakage measurement is compared to the
characterized profiling model to recover the key.

In our threat model, the adversary has a limited number of queries to char-
acterize a profiling model. Additionally, he has a limited number of experiments
to conduct hyperparameter tuning. Note, while our framework allows various
machine learning tasks, we concentrate on the classification task in this paper,
as it is common in the profiled SCA [7–9].

3.2 Components of a Successful Attack

Current evaluations for profiled SCA mostly assume that the attacker is un-
bounded in his computational power. This assumption aims to provide the
worst-case scenario for the designer, which should help assess the risk properly.
Although the attacker is considered unbounded, he is always bounded, with
bounds set ad-hoc, and there are no clear directions one should follow when
modeling the realistic attacker.

First, we discuss two core assumptions we make in this research. These need
to be fulfilled so that general meaningful comparisons between profiled attacks
can be made, and our framework can provide exploitable results:
1. Attack must be possible. While our framework does not require the attacker

to be always successful, the attack must be possible. For instance, having
measurements completely uncorrelated with the labels (set of variables de-
fined from a leakage model) will make our framework not useful. Still, no
side-channel attack can succeed if there is no statistical connection between
the measurements and labels. Consequently, this is not a drawback of our
framework.

2. We consider only profiled (supervised) attacks, and therefore, profiling mea-
surements need to allow learnability about the problem. Profiling measure-
ments that are completely uncorrelated with the attack measurements would
make our framework not usable. The hyperparameter tuning (if possible)
must allow reaching a useful profiling model. Again, the profiled attacks
cannot work if the previous conditions are not fulfilled, which does not rep-
resent our framework’s disadvantage.
Next, we examine the three components of a successful attack. The worst-case

(strongest) attacker will be unbounded in all three components. Simultaneously,
fulfilling only one or two of those components accounts for more realistic settings
one encounters in practice:
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1. Quantity (the number of measurements) - there must be sufficient measure-
ments in the profiling/testing phase to conduct the attack, i.e., to build a
reliable profiling model that generalizes to the unseen data. This criterion is a
natural one and already well-known in SCA as researchers usually report the
attack’s performance concerning a different number of measurements. There
is much less research to determine the minimum number of measurements
for a successful attack.

2. Quality (based on the available measurements, it must be possible to find
the mapping f between the input (measurements) and output (labels)) - the
measurements need to be of sufficient quality to conduct the attack. This
condition could be translated into the requirement that the SNR should be
sufficiently high or that the data need to have all information required to
model the leakage correctly. Finally, this component includes the leakage
model’s quality, i.e., that the considered leakage model provides sufficient
information and the distribution of leakages. Again, like the previous com-
ponent, this one is well addressed in the SCA community as researchers usu-
ally conduct various pre-processing steps, e.g., to select/transform features
or align traces.

3. Learnability (hyperparameter tuning) - the attacker needs to learn the profil-
ing model. This perspective also accounts for finding the best possible hyper-
parameters for the profiling model. The learnability is naturally connected
with the quantity and quality components. This component is significantly
less addressed, but more recent works show the SCA researchers being more
interested in it [9–11, 27], confirming our claims about the learnability im-
portance. We note that while the researchers usually conduct various tuning
procedures, they rarely report how difficult it was to find the hyperparame-
ters used in the end.

We should not limit the quality component: if the attacker can obtain mea-
surements, those measurements should be of the best possible quality. When
discussing the quantity and learnability components, we can (and we must)
evaluate the limit of the number of profiling measurements and experiments in
the tuning phase since:

1. If always considering the extreme case of unbounded measurements in the
profiling phase, we “allow” to utilize weaker attack, which may only work
in this extreme scenario. On the other hand, if we consider the minimum
number of available traces in the profiling phase while still succeeding in the
attack phase, we promote efficient attacks.

2. Theoretically, the attacker who is unbounded in his capabilities could break
cryptographic implementations even with a single measurement as he can
always find the optimal attack. This reasoning suggests that ultimately, there
is nothing the designer could do to stop the attack.

Remark 2. Having a limited number of measurements or time to conduct hyper-
parameter tuning is a realistic occurrence in practical scenarios, as the attacker
may be limited by time, resources and also face implemented countermeasures,
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preventing him from taking an arbitrarily large number of side-channel measure-
ments while knowing the secret key of the device.

To conclude, we need to consider an attacker who can perform a successful
attack with the smallest possible number of profiling measurements N , where
success is defined over a performance metric ρ with a threshold of δ. To reach
that success, the attacker should use the smallest possible number of tuning
experiments H (where h represents a specific set of hyperparameters, i.e., a
specific profiling model).

Example 1. Consider ρ being the guessing entropy < 20, which is a common
threshold value in the side-channel analysis, see, e.g., [6]. Then, the measure of
the attacker’s power is 1) the number of profiling traces N he needs to train
a profiling model, which is then used on attack traces (of size Q) to break the
implementation, 2) the number of experiments conducted before finding the
hyperparameters resulting in a strong attack, or 3) both the number of profiling
traces and hyperparameter tuning experiments.

3.3 Framework Description

The goal for machine learning classification task is to learn a mapping (model)
f from X to Y, i.e., Y ← f(X, θ) where X are samples drawn i.i.d. from set
X and where the cardinality of X equals N . Let θ be the profiling model’s
parameters that result in the best possible approximation from h hyperparameter
combinations. Additionally, let gQ,f = [g1, g2, . . . , g|K|] be the guessing vector
from the profiled side-channel attack using Q traces in the attack phase, and
the profiling model f built in the profiling phase as an input. In practice, the
estimation of f depends on hyperparameters h, which we denote by fh when the
dependency is emphasized. Then, ρ(gQ,f , k

∗
a) represents the performance metric

of the profiled side-channel attack using the secret key k∗a to evaluate the success.
For a given number of attack traces Q and h1, . . . , hH hyperparameter tuning

selections (H being the number of different hyperparameter sets), the Efficient
Attacker Framework aims at minimizing the number of profiling traces N to
model the function fhi

with hyperparameter selection hi (1 ≤ i ≤ H), such that
the performance metric is still below (or above) a certain threshold δ:

min{N : ρ(gQ,fhi
, k∗a) < δ}, where N, i ≥ 1 and i ≤ H. (1)

Algorithm 1 gives the procedure of the evaluation in the Efficient Attacker
Framework, and a motivating example is given in Example 2. Note that the
framework allows conducting experiments in parallel to the data acquisition
phase. Indeed, one can start with evaluating the performance regardless of the
number of already acquired measurements. For example, the attacker can assume
the regime where he downloads new measurements every hour and repeats the
experiments with an always-increasing number of measurements.

Algorithm 1 increases the number of profiling traces until the stop condition
(statically defined) is satisfied. As a secondary objective, it attempts to reduce
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Static parameters: Maximum size H of hyperparameter models to consider,
a performance metric ρ and a threshold value δ, e.g., GE
< 20

Input : Profiling and attacking device to collect traces from
Output : Minimum number of profiling traces N

1 Capture a test dataset (with secret key k∗a). Its size Q depends on the
expected performance of the attack. For instance, this test dataset can be as
small as one trace!

2 Training set ← ∅
3 N ← 0
4 while True do
5 Capture one trace // A speed-up can be obtained by advancing

faster, e.g., 10 by 10 traces

6 Append them to Training set, N ← N + 1
7 for i = 1; i ≤ H; i+ + do
8 (Randomly) select hyperparameters h
9 Perform Training with selected hyperparameters and obtain a model

fh
10 Receive ρ(gQ,fhi

, k∗a)

11 if ρ < δ then // The model is good enough

12 store hyperparameter selection h
13 break

14 return Minimum number of profiling traces N

Algorithm 1: Conceptual evaluation procedure in the Efficient Attacker
Framework.

the search space for the hyperparameters models, with the learning phase to be
as computationally efficient as possible.

Remark 3. Algorithm 1 considers both the number of profiling traces and hy-
perparameter tuning experiments, but this can be easily adjusted for only one
of those options, extended or replaced by other performance evaluations. For in-
stance, if using a template attack, there are no hyperparameters to tune, which
means that only the number of profiling traces is relevant. On the other hand, if
facing a setting where one cannot obtain enough measurements to reach δ, then
the natural choice is not to limit the number of measurements even more but
to consider the number of hyperparameter tuning experiments. While we con-
sider the number of hyperparameter tuning experiments from the learnability
perspective in this paper, this could be easily cast, for instance, to the selection
of points of interest with template attack.

Example 2. A standard performance metric used in the side-channel analysis is
guessing entropy with, e.g., a threshold δ = 20. In the Efficient Attacker Frame-
work, one would find the minimum number of profiling traces N and hyperpa-
rameter experiments H to reach a guessing entropy below 20 for a fixed number
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of Q attack traces. This setting ensures that key enumeration algorithms [28]
(when attacking several key bytes, as in AES-128 where there are 16 bytes of
the key that needs to be recovered simultaneously for a full key recovery attack)
are efficient. Typically, Q ranges over a set of values. Experimental results are
discussed in Section 4.

Remark 4. In practice, Algorithm 1 shall be evaluated several times to get an
empirical estimation Ê(N) of the minimum number of profiling traces. This can
be achieved by averaging several evaluations of Algorithm 1 (as done in non-
profiled side-channel attack-oriented frameworks, see [13, §3.1]).

Remark 5. The Efficient Attacker Framework is evaluator-oriented and aims at
unleashing profiled attacks even with frugal learning constraints. This reflects
some situations where the number of interactions with the device is limited:

– by design, e.g., owing to enforcement of countermeasures such as limited
number of cryptographic executions until system end-of-life, or

– by certification constraints such as limited “elapsed time” in the Common
Evaluation Methodology (CEM [29, B.4.2.2]) of the Common Criteria.

Remark 6. If two profiling models exhibit very similar performance but require
a radically different amount of resources, then a Pareto front of solutions (i.e., a
set of non-dominated solutions) needs to be given where the designer can decide
on a proper trade-off.

We reiterate that our framework is not designed to force the attacker to use
a small number of measurements in the profiling phase or limit the number of
experiments in the hyperparameter tuning phase. Instead, it forces the attacker
(evaluator) to find the smallest number of traces and tuning experiments to
attack the target successfully.

4 Experimental Evaluation

4.1 Datasets

The first dataset we consider is the ASCAD with a fixed key dataset. The mea-
surements are obtained from an 8-bit AVR microcontroller running a masked
AES-128 implementation, where the side-channel is electromagnetic emanation [30].
This dataset has the same key for the profiling and attack phase. There are 50 000
traces for profiling and 10 000 for the attack. We use a pre-selected window of
700 features for the raw trace, and we attack key byte 3, which is the first masked
key byte, as commonly done in the literature [30].

The second dataset is a version of the ASCAD dataset with random keys
(denoted ASCAD random keys dataset) in the profiling set. The dataset consists
of 200 000 traces for profiling and 100 000 for the attack. We use a pre-selected
window of 1 400 features for this dataset and attack key byte 3 (the first masked
key byte).
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4.2 Efficient Attacker Framework Evaluation

The Efficient Attacker Framework enables us to compare side-channel attacks
and gives a fair comparison between leakage models. For deep learning-based
side-channel attacks, it is often assumed to consider the most accurate leakage
model, i.e., using the intermediate value as class variables (the Identity leakage
model5) [9,27,31], which results in 2b classes where b is the number of considered
bits. In an unsupervised setting (i.e., non-profiled attacks), using the Hamming
weight or the Hamming distance leakage model is a common choice, which results
in b+1 classes only. Using b+1 Hamming weight/distance classes to guess a key
value in {0, . . . , 2b−1} cannot result in a single trace attack on average. However,
using the Hamming weight/distance leakage models may require fewer traces in
the profiling phase to gain good quality estimates of the leakage models (as there
are fewer classes to consider). It is, therefore, not straightforward to determine
what leakage model is most suitable. Consequently, to give a fair comparison,
one should include a dependency on the number of traces in the profiling phase,
as done in the Efficient Attacker Framework.

As a metric, we consider guessing entropy (GE), and in particular, we give the
minimum number of profiling and attack traces to reach GE < 20. We randomly
define hyperparameters for every training procedure for multilayer perceptron
(MLP) and convolutional neural networks (CNNs) according to the hyperparam-
eter ranges provided in Table 1. This scenario represents an optimized random
hyperparameter search since the hyperparameter ranges are chosen based on the
optimized minimum, and maximum values (the minimal and maximal values are
selected based on related works) [9,11,27,31]. The number of epochs is set to 50
(we observed that the models tend to overfit and degrade the generalization after
50 epochs), and the backpropagation algorithm optimizer is Adam. The weights
and biases are initialized in a randomly uniform way. We use the batch normal-
ization layer to avoid overfitting, which normalizes the input layer by adjusting
and scaling the activations. For CNNs, a pooling layer (with hyperparameters
range specified in Table 1) always comes after a convolution layer.

We do not explicitly discuss the time perspective here (e.g., the number
of hours or days needed to conduct the experiments). Comparing the number
of tuning experiments gives a fair evaluation, regardless of the time needed to
run those experiments. We note that the number of tuning experiments up to
50 is low, although we manage to break the target. There is no constraint on
the number of experiments one can use with our framework. Additionally, as
we work with guessing entropy, each attack is repeated 100 times, which gives
much higher computational complexity than one could conclude solely based
on the number of tuning experiments. Every figure contains the results for the
Hamming weight and Identity (i.e., intermediate value) leakage models, as AES
operates on b = 8 bits. We select the best neural network model out of 5, 10,

5 By the “Identity leakage model”, we mean that we do not assume the number of
classes can be reduced owing to model degeneracy, as would be the case for instance
in the “Hamming weight leakage model”, where it is assumed that the leakage Y
depends in X only through wH(X) (the Hamming weight of X).
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Table 1: Hyperparameter search space for MLP and CNNs.

Hyperparameter MLP CNN

min max step min max step

Learning Rate 0.0001 0.001 0.0001 0.0001 0.001 0.0001

Mini-batch 100 1 000 100 100 1 000 100

Dense (fully-connected) layers 1 4 1 1 4 1

Neurons (for dense or fc layers) 100 400 100 100 400 100

Convolution layers - - - 1 2 1

Filters - - - 4 16 4

Kernel Size - - - 2 10 2

Stride - - - 1 4 1

Pooling Size - - - 1 4 1

Pooling Stride - - - 1 4 1

Activation function (all layers) ReLU, Tanh, ELU, or SELU

25, or 50 trained profiling models for each leakage model and a different number
of profiling traces. More precisely, we compare the performance of a different
number of profiling models (thus, forming ensembles) as done in [31]. Here, the
main idea is to demonstrate that the learnability also represents an important
dimension in our framework. All the graphs are to be viewed in color.

ASCAD Fixed Key Dataset Next, we depict results for the ASCAD fixed
key dataset in Figures 2 and 3, for MLP and CNN, respectively. Again, for
the CNN case, we also depict the results by using the architecture from [9].
Again, the results confirm the importance of considering the number of profiling
traces and hyperparameter tuning. In particular, for MLP in combination with
the HW leakage model: 25 and 50 models behave the same for 30 000 profiling
traces, indicating they are “equally” good. Nevertheless, restricting the number
of profiling traces, e.g., to 20 000 reveals that 50 models reach better attack
performance. Finally, notice that many models perform better for 35 000 than
45 000 profiling traces, indicating that the data cannot fit the current network
capacity.

ASCAD Random Keys Dataset Figures 4 and 5 show results for the AS-
CAD with the random keys dataset. In Figure 4, we give results for MLP with
hyperparameters defined per Table 1. Notice that considering a different number
of profiling traces shows radically different behaviors. The more important is to
observe that the profiling traces component becomes not as relevant as increasing
the number of searched MLP models, especially for the Identity leakage model
in Figure 4b. For example, by keeping 40 000 profiling traces, the best number
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(a) MLP, HW leakage model. (b) MLP, Identity leakage model.

Fig. 2: Profiled SCA on the ASCAD fixed key dataset with MLP.

(a) CNNs, HW leakage model. (b) CNNs, Identity leakage model.

Fig. 3: Profiled SCA on the ASCAD fixed key dataset with CNNs.

of attack traces after searching for five models is around 3 100 traces, while the
minimum number of attack traces to reach GE< 20 with 50 models is close to
1 000 traces.

Figure 5 depicts the results for CNN architectures confirming the previous
observations. In this particular example, we can immediately say how important
it is to keep improving the number of profiling traces as well as the number of
searched models. This is expected as, due to the larger number of hyperparameter
options, CNNs are more difficult to tune compared to MLP. In this case, the
Efficient Attacker Framework reveals that increasing both components (profiling
traces and learnability) makes the attack stronger.

4.3 Strong Adversary in the Efficient Attacker Framework

In the previous section, we evaluated our framework under the perspective of an
adversary with strong side-channel capabilities (a profiled attack is mounted over
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(a) MLP, HW leakage model. (b) MLP, Identity leakage model.

Fig. 4: Profiled SCA on the ASCAD random keys dataset with MLP.

(a) CNNs, HW leakage model. (b) CNNs, Identity leakage model.

Fig. 5: Profiled SCA on the ASCAD with random keys dataset with CNNs.

optimal trace interval containing leaky points-of-interests). However, this same
adversary executes a random search and does not possess an optimal neural
network model. In this section, we consider state-of-the-art models from [9]
and [27], which provide carefully tuned CNN models for the ASCAD datasets.
This way, an adversary is considered strong from both side-channel and deep
learning perspectives. As the hyperparameters are already chosen, we again run
50 models for each fixed number of profiling traces by only randomly varying
the batch size (from 50 to 400, with steps of 50 traces).

Figure 6 provides the results for the cnn architecture [32] proposed in [9] for
the Hamming weight and Identity leakage models (for the HW leakage model,
we use the same learning model as for the Identity leakage model, but we set
the number of output classes to 9) . The framework indicates that increasing
the number of profiling traces is not very relevant when possessing an “optimal”
profiling model. Indeed, in Figure 6b, the best results are achieved for 30 000
profiling traces, and adding more profiling traces increases training time and
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does not improve attack results. In this example, we observe with a real-world
dataset that GE< 20 can be achieved with a single attack trace.

The Identity leakage model results from Figure 6b indicate one more inter-
esting phenomenon, which is, to the best of our knowledge, not before reported
in deep learning-based SCA. We can notice for one model setting the behavior
called deep double descent [33]. This behavior describes a phenomenon where
the test loss first decreases with the increase in the architecture size. Then, the
loss starts to increase and finally decreases again. When the loss increases, this is
connected with an effect called “sample-wise non-monotonicity”. Interestingly,
this effect describes a behavior where more training traces damages the test
phase’s performance. While there is no definitive answer to why this behavior
happens, one explanation could be that the model does not have enough capac-
ity to fit the data. Adding more data requires the model to drastically “change”
its parameters, improving attack performance.

(a) CNN from [32], HW leakage model. (b) CNN from [32], Identity leakage model.

Fig. 6: Profiled SCA on the ASCAD with fixed keys dataset with CNN architec-
ture from [9].

Figure 7 shows results for noConv1 ascad desync 0 [34] proposed in [27]. As
this neural network architecture is an optimization built on top of [32], results
for the ASCAD fixed key dataset indicate an even smaller minimum number
of profiling traces to reach successful results, which is 20 000 profiling traces.
Nevertheless, we can also observe the differences in model performance with the
Efficient Attacker Framework when selecting different leakage models.

4.4 General Observations

On a general level, while not the core research point in this work, we note
that the Identity leakage model requires fewer attack traces to reach GE < 20,
which is expected. MLP exhibits somewhat better performance than CNN for
a smaller number of profiling traces, which is again in line with related works.
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(a) CNN from [34], HW leakage model. (b) CNN from [34], Identity leakage model.

Fig. 7: Profiled SCA on the ASCAD with fixed keys dataset with CNN architec-
ture from [27].

It is important to observe how the learnability constraint directly influences the
required combination of the number of profiling and attack traces to reach a low
guessing entropy. Moreover, one can choose a trade-off between profiling traces
N and attack traces Q while still performing a successful attack.

While our framework aims to find the minimal number of profiling traces and
keeping the number of tuning experiments to mount a successful attack as low
as possible, we never state what those numbers should be. Indeed, the experi-
ments showcase radically different behaviors for various numbers of profiling and
attack traces (coupled with the influence of the number of tuning experiments).
Providing actual values makes sense only when the whole experimental environ-
ment is considered (datasets, algorithms, environmental settings, etc.) and, even
more importantly, when one compares experiments on the same targets but with
different settings. All our experiments strongly confirm that the number of pro-
filing traces and the number of experiments (complexity) play a paramount role
and should be included in proper performance analysis for deep learning-based
SCA.

4.5 Advantages of the Efficient Attacker Framework

Usually, it is expected that an attacker would make use of the maximum possible
number of profiling traces to build a model (templates, deep neural networks,
etc.). Similarly, the number of attack traces tends to be maximized to esti-
mate the model exploitation capability better. In cases when the learning model
is inefficient (i.e., unable to fit existing leakage) and all available side-channel
measurements are used, the attacker or evaluator has a limited view of which
component has a significant impact on the attack results, which can lead to
overestimating the security of the target.

In this case, the reference metric would be the guessing entropy of a single
experiment, which says nothing about the influence of the number of measure-
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ments and tuning experiments on the security of the assessed target. Therefore,
the Efficient Attacker Framework usage provides a better representation of the
influence of the number of profiling traces, attack traces, and tuning experi-
ments. Here, we analyze an attack’s efficiency with GE < 20 as a reference
metric. Of course, the framework can be adapted to any metric that describes
the attack’s efficiency, such as success rate, or extended to more dimensions that
may influence the strength of the attacker, for example, by including resource
requirements. While the benefits of depicting the results with our framework
are evident, one can ask whether we lost some information when compared to
the traditional result depiction.We claim this not to be true due to two reasons.
First, all relevant information is kept so the attacker can still depict traditional
results. Second, once the appropriate performance level is set (e.g., guessing en-
tropy value equal to δ), it is less relevant to observe how that value is reached
(as values above the threshold are out of the attacker’s reach).

As a common scenario for deep learning side-channel evaluation, our exper-
iments concentrated on the concept of divide-and-conquer strategies for sym-
metric ciphers. However, the Efficient Attacker Framework is not limited to this
scenario, and depending on the threat model of the attack, the framework can
be extended, for example, to rank estimation strategies [35] or even to recursive
recovering strategies like Extend and Prune (EP) [36]. Instead of using metrics
on subkey bytes, an evaluator would choose a rank estimation strategy and de-
pict the number of attack traces to reach a certain estimated rank within the
complete keyspace as a performance metric. Like in our experiments, this may
be evaluated in terms of the number of training traces. Naturally, the Efficient
Attacker Framework would allow us to compare different rank estimation strate-
gies. EP techniques are required when estimating models for the entire keyspace
is not feasible as for many asymmetric ciphers. To cope with this, the recov-
ery of key bits depends on the information of the previous bits or information.
While the estimation of key recovery differs, the application of the Efficient At-
tacker Framework is similar. Depending on the chosen cryptographic primitive,
an evaluator could again depict the minimum number of traces in the attack
phase, depending on the amount of information (bits or chunks of information).

Some former works also attempted to make the most of available information
contained within a trace. For instance, soft analytical side-channel analysis [37]
aims at leveraging the information collected at different steps in one round (e.g.,
for AES: AddRoundKey, SubBytes, MixColumns, etc.), and even beyond, from
round to round. For such constructive information gathering to occur, the whole
secret shall be guessed at once. Belief-propagation algorithms can be used in this
respect (to relate all leakage points of interest). However, we notice that such a
technique is mostly profitable to exploit as much as possible the online captured
side-channel, whereas the scope of our paper is to optimize the usage of the data
collected from the learning device.
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5 Conclusions

In this paper, we discuss how to evaluate attacks when considering the profiled
side-channel analysis. We argue that considering only an unbounded attacker can
negatively affect how side-channel analysis is performed while not being realis-
tic. We propose a new framework, denoted as the Efficient Attacker Framework,
where we explore the number of measurements and hyperparameter tuning ex-
periments required in the profiling phase such that the attacker is still successful.

We consider our new framework more realistic but also more adept for ex-
perimental evaluations since it allows us to compare different results in a more
unified way. In particular, our framework will hopefully trigger more research
relevant not only for academia but also for evaluation labs. Finally, our frame-
work is relevant beyond profiled side-channel analysis and can be used in any
supervised learning setting.
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