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Abstract. A variety of post-quantum cryptographic schemes are cur-
rently undergoing standardization in the National Institute of Standards
and Technology’s post-quantum cryptography standardization process.
It is well known from classical cryptography that actual implementations
of cryptographic schemes can be attacked by exploiting side-channels,
e.g. timing behavior, power consumption or emanation in the electro-
magnetic field. Although several of the reference implementations cur-
rently in the third and final standardization round are – to some extent –
implemented in a timing-constant fashion, resistance against other side-
channels is not taken into account yet.
Implementing sufficient countermeasures, however, is challenging. We
therefore exemplarily examine CRYSTALS-Kyber, which is a lattice-
based key encapsulation mechanism currently considered as a candidate
for standardization. By analyzing the power consumption side-channel
during message encoding we develop four more and compare six different
implementations with an increasing degree of countermeasures.
We show that introducing randomization countermeasures is crucial as
all examined implementations aiming at reducing the leakage by minimiz-
ing the Hamming distance of the processed intermediate values only are
vulnerable against single-trace attacks when implemented on an ARM
Cortex-M4.

Keywords: Post-Quantum Cryptography · NIST Competition · Mes-
sage Encoding · CRYSTALS-Kyber · Side-Channel Analysis.

1 Introduction

Quantum computers have been a merely theoretical construction for many de-
cades. However, during the last years significant progress has been made and
increasingly large quantum computers have been built [14, 15]. A cryptographi-
cally relevant quantum computer threatens today’s most wide-spread asymmet-
ric cryptographic schemes, namely Rivest-Shamir-Adleman (RSA) and Elliptic
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Curve Cryptography (ECC). These schemes rely on either the integer factor-
ization problem or the discrete logarithm problem which a quantum computer
can efficiently solve using Shor’s algorithm [30]. For industries with products in
the field for a long time (e.g. automotive) or data that might be valuable even
decades from now (e.g. health data) the transition to quantum resistant crypto-
graphic schemes therefore has to be initiated as soon as possible [19,20,29].

The field of Post-Quantum Cryptography (PQC) is based on mathemati-
cal problems that are hard to solve for both classical and quantum computers,
thereby offering suitable replacement candidates for RSA and ECC. The most
prominent standardization effort for PQC is conducted by the National Institute
of Standards and Technology (NIST) in their PQC standardization process [23].
The Key Encapsulation Mechanism (KEM) CRYSTALS-Kyber is a third round
candidate of the NIST PQC standardization process [22].

Side-channel attacks exploit channels which unintentionally carry data de-
pendent information, e.g. power consumption or timing behavior [8, 12, 16, 17].
By monitoring these channels during execution of a security critical function an
attacker might extract secret data. Side-channel attacks thereby do not focus
on attacking the algorithm itself but on a potentially insecure implementation.
Side-channel attacks also apply to PQC schemes and resistance against side-
channel attacks is an evaluation criteria in the third and final round of the NIST
PQC standardization process [18].

Simple Power Analysis (SPA) aims at extracting a secret by measuring only
one execution of the security relevant function while Differential Power Anal-
ysis (DPA) requires an attacker to record a certain number of traces in order
to perform an attack. In general, DPA is considered the more powerful attack
technique. However, if an SPA does succeed the results are devastating as only
a single trace is enough to attack the implementation. Side-channel resistance of
the remaining candidates in the NIST PQC standardization process has for ex-
ample been investigated in [26,31,32], with CRYSTALS-Kyber being one of the
examined – and vulnerable – candidates. The second round candidate NewHope
proved vulnerable against SPA, with the authors suggesting that a nearly iden-
tical attack path could also be applied to CRYSTALS-Kyber [1].

To counter SPA and DPA, masked implementations of CRYSTALS-Kyber
have been proposed [4,7,10]. Masking reduces side-channel leakage by processing
data in shares. An attacker can only recompute the original value if she can
correctly recover all involved shares. However, in case of a high SPA success
rate, conducting an SPA on the involved shares becomes a feasible attack path.
Therefore, on top of examining sufficiency of masking schemes themselves [5] it
might be necessary to implement additional countermeasures.

This work aims at comparing countermeasures which are applicable on top of
a masking approach. CRYSTALS-Kyber hereby is merely chosen as an exemplary
PQC scheme, as both publications on side-channel vulnerabilities as well as first
suggestions on how to mitigate the threat do exist.

The following chapters are organized as follows: Section 2 briefly introduces
CRYSTALS-Kyber. Section 3 outlines several attack paths motivating the se-
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lection of the message encoding step for the attacks conducted in this work.
Section 4 presents the six different implementations which have been examined
introducing the subsequently added countermeasures for each of the implemen-
tations.

Following the attack path lined out for NewHope in [1], we first evaluate
the reference implementation submitted to the third round of the NIST PQC
standardization process [2]. The second implementation is based on an approach
to reduce the Hamming distance of the leaking values as suggested by Amiet et
al. [1]. For the third implementation, we introduce the use of a dummy poly-
nomial aiming at hiding the processing of the involved coefficients. The fourth
implementation on top of that balances the look-ups of the involved polynomials.
For the fifth implementation, we use randomness to invert the order in which
the polynomials are processed. The sixth implementation then fully randomizes
the order in which the involved data is processed.

Section 5 contains the experimental results for each of the implementations
with all but the last implementation failing to withstand the conducted at-
tacks. Summing up the experimental results, Section 6 comes to the conclusion
that relatively simple countermeasures are not sufficient to prevent an SPA.
Therefore, more sophisticated countermeasures have to be developed to secure
PQC not only against SPA but also against the more powerful DPA. We show
that randomization countermeasures can reduce the SPA success rate to random
guessing, making these countermeasures a potentially beneficial extension even
for masked implementations.

2 Background on CRYSTALS-Kyber

Kyber is an IND-CCA2-secure KEM originally published in [6]. To obtain CCA-
security, Kyber applies a variant of the Fujisaki–Okamoto (FO) transform [11]
to the CPA-secure Public Key Encryption (PKE) scheme Kyber.CPAPKE. In
general, KEMs are used by the communicating parties to generate shared keys
for symmetric encryption allowing them to establish a secure communication
channel. PKE is used to transmit encrypted data between the participants while
processing the KEM.

Kyber is parametrized by a set of chosen integers. The security strength of
the exchanged symmetric keys is basically determined by n which also defines
the ring together with prime number q within this lattice-based scheme.

Algorithm 1 describes the encapsulation of the Kyber KEM scheme. For each
execution of the encapsulation, the message m is randomly chosen and hashed
by the initiator. Afterwards, m and the hash of the public key pk are hashed into
the preliminary key K̄ and into the random coins r. Thereafter, pk, m, and r are
given to the encryption function of the PKE scheme (line 4, Algorithm 1), which
is described in Algorithm 2. The shared key K is derived from the preliminary
key K̄, and the ciphertext c is sent to the responder. The symmetric primitives
H(·), G(·), and KDF(·) are preferably instantiated by SHA3-256, SHA3-512, and
SHAKE-256, respectively [3, 21].
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Algorithm 1 KYBER.CCAKEM.Enc(pk): encapsulation [3]

Input: Public key pk
Output: Ciphertext c
Output: Shared key K

1: m← {0, 1}256
2: m← H(m)
3: (K̄, r) := G(m||H(pk))
4: c := KYBER.CPAPKE.Enc(pk, m, r)
5: K := KDF(K̄||H(c))

return (c,K)

The random message m is the only unknown session related variable and has
to remain secret while it is incorporated as fresh entropy during the encapsula-
tion. With knowledge about m, it is possible to reconstruct the encapsulation,
and hence compute the shared key K.

During the encryption (line 5, Algorithm 2), m is given to the Decode(·)
function. This processing, also denoted as message encoding, only bases on the
message itself, potentially leaking information about the message m. Please note
that the Decode(·) function is further discussed in Section 4.1 which describes the
implementation of the message encoding step for the reference implementation
[2].

Algorithm 2 KYBER.CPAPKE.Enc(pk,m, r): encryption [3]

Input: Public key pk
Input: Message m
Input: Random coins r
Output: Ciphertext c

1: t̂ := Decode(pk)
2: Â := Sample(pk)
3: (r̂, e1, e2) := Sample(r)
4: u := NTT−1(ÂT ◦ r̂) + e1
5: v := NTT−1(t̂T ◦ r̂) + e2 + Decompress(Decode(m))
6: c1 := Encode(Compress(u))
7: c2 := Encode(Compress(v))

return c = (c1||c2)

As a result of the applied FO transform, the decrypted message m′ is re-encrypted
and compared with the received ciphertext c during the decapsulation, which is
described in line 6 of Algorithm 3. Therefore, the message encoding can be tar-
geted at both participating sides of the KEM.

During the CPAPKE decryption, the Decode(·) function, which is not ex-
plicitly described in this section, processes not only the message m but also the
secret key sk (see [3]).
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Algorithm 3 KYBER.CCAKEM.Dec(sk, c): decapsulation [3]

Input: Secret key sk
Input: Ciphertext c
Output: Shared key K

1: pk := sk + 12 · k · n
8

2: h := sk + 24 · k · n
8

+ 32
3: z := sk + 24 · k · n

8
+ 64

4: m′ := KYBER.CPAPKE.Dec(sk, c)
5: (K̄′, r′) := G(m′||h)
6: c′ := KYBER.CPAPKE.Enc(pk, m′, r′)
7: if c = c′ then
8: K := KDF(K̄′||H(c))
9: else

10: K := KDF(z||H(c))
11: end if

return K

3 Side-channel Attack Paths Against CRYSTALS-Kyber

This section aims at categorizing several potential side-channel attack paths
allowing for a reconstruction of the shared key. To generate a shared key basically
only two non-public variables are involved: the session-bound random message
m and a participant’s secret key. The random message m is generated during the
key encapsulation (Algorithm 1) and transformed into the ciphertext c utilizing
the public key. Consequently, if an attacker manages to obtain m, she can easily
compute the shared key.

The secret key, by contrast, is utilized within the key decapsulation to recover
m or rather m′ from c (Algorithm 3). Hence, if an attacker manages to obtain
the secret key, she can compute the shared key as well.

Potentially, side-channels might leak sufficient information on these two vari-
ables and also, trivially, side-channels might leak sufficient information on the
shared key itself during its generation.

Different attack categories can be considered: attack category 1 aims at re-
covering the message m by attacking the key encapsulation. Attack categories 2
and 3 concentrate on the secret key, and the shared key, respectively. Naturally,
attacks on the message (cat. 1) and the shared key (cat. 3) only allow for inter-
cepting a single session and need to be continuously repeated, whereas attacks on
the secret key (cat. 2) would allow for intercepting all sessions established with
the same secret key. This work focuses on attacks on the message with the attack
paths A to E explained in the following paragraph. Category 2 and 3 are not
discussed any further throughout this work but, nevertheless, require as much
attention as category 1 in order to create a properly secured implementation.

• Attack Path 1.A The random message m is freshly generated for each
encapsulation call (Algorithm 1, line 1), and thus can be observed only once.
Therefore, an SPA with horizontal attacks is feasible. Especially the fetch
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from a random number source as well as the move from such a source to a
dedicated Random-Access Memory (RAM) variable is in the focus of this
attack path.

• Attack Path 1.B The random message m is fed into the hash function
H(·) (Algorithm 1, line 2). Here, m is most likely moved from its dedicated
RAM variable to an interface RAM variable of the hash function. The same
holds true for the output H(m) that simply replaces m in the remainder
of the encapsulation. Additionally, the message treatment, e.g. the message
scheduling for SHA3-256, could be exploited. Again, an SPA with horizontal
attacks is the method of choice.

• Attack Path 1.C This attack path (Algorithm 1, line 3) is similar to path
B. With the input of G(·), an attacker might obtain m, whereas the 256
most significant bits of the output K̄ of G(m||H(pk)) could directly be used
to compute the shared key K since the ciphertext c is public. Note that r is
not of interest since it can be computed if m is recovered or not required if
K̄ is recovered. Though, r alone cannot be used as an attack vector.

• Attack Path 1.D This attack path is related to the message encoding
(Algorithm 1, line 4) utilized within the CPAPKE encryption (Algorithm 2,
line 5). We refer to the following section where we elaborate on that process.

• Attack Path 1.E This attack path (Algorithm 1, line 5) is likewise similar
to path B and C. With the input of KDF (·), an attacker might obtain K̄,
whereas the output is the shared key K.

Summarizing, each step of the key encapsulation is suitable to recover the shared
key if side-channels leak sufficient information.

We decided to concentrate on attack path 1.D for several reasons: on the
one hand there are already published works dealing with securing the message
encoding [1] and on the other hand the message m is processed in bitwise manner
during the message encoding. In contrast, the other attacks paths only allow for
observing the target variables while they are moved. It is widely believed in side-
channel attacks that the smaller the portion of the target variable the better the
exploitability in case side-channels leak sufficient information on that portion.
Therefore, attacks on the message encoding are presumably more hazardous.

In order to secure an implementation against side-channel attacks, a variety
of countermeasures can be considered. Masked implementations have been pro-
posed, e.g. by Reparaz et al. [28], and Oder et al. [25], with masked encoding
functions processing two shares individually. However, in case of a high SPA
success rate both shares might be determined by an attacker who can thereby
reconstruct the original message. Reparaz et al. [27] also presented an addi-
tively homomorphic Ring-Learning-With-Errors masking that does not require
a masked encoder and uses an unprotected encoding function. Consequently, in
case single-trace SPA attacks apply flawlessly (which we demonstrate in Sec-
tion 5.2), masking in shape of sharing is not effective at all.
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4 Message Encoding With Countermeasures

Focusing on the message encoding step (see Section 3, attack path 1.D), we
implement and attack different countermeasures. The third up to the sixth im-
plementation candidates have been designed and developed through the course
of this work. Please note that we do not claim full effectiveness. Our selec-
tion of countermeasures shall rather demonstrate how to proceed to minimize
side-channel leakage only by modifying the message encoding algorithm without
introducing complex masking or hiding schemes. The following approaches are
explained in detail in Section 4.1 to Section 4.6:

1. The message encoding step as implemented in the reference implementation
[2] without additional countermeasures against SPA.

2. An implementation of the message encoding according to [1], which aims at
reducing the Hamming distance of the leaking values based on a multiplica-
tive approach.

3. A dummy polynomial is included aiming at hiding the processing of the
involved coefficients.

4. The preceding approach is improved by balancing the look-ups of the poly-
nomials, leading to a Hamming distance independent of the processed bits.

5. The order of the processed polynomials is randomly inverted for each exe-
cution of the encoding, changing the signature of the processed bit in the
power side-channel.

6. Additionally, the processed bytes and bits are randomly shuffled for each
execution of the encoding.

For all presented implementations, an SPA is carried out aiming at recovering
the value of the processed bits by examining a single trace. Within the imple-
mentations, the message m, and the prime q are denoted as msg, and KYBER_Q,
respectively.

4.1 Message Encoding According to Reference Implementation

Listing 1 presents the reference implementation [2] of the message encoding func-
tion as submitted to the third round of the NIST PQC standardization process.
It takes a 32-byte message msg as an input and converts it to a polynomial r of
degree 256. To this end, the function iterates in a bitwise manner over msg and
sets a coefficient of r either to 0 or to the constant (KYBER_Q+1)/2, depending
on whether the bit of msg is 0 or 1.

To set the coefficients of the polynomial to the correct value in line 6 of
Listing 1, a mask is calculated which is either 0x0000 or 0xFFFF, depending
directly on a single bit of msg.
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1 void poly_frommsg(poly *r, const uint8_t msg[

KYBER_INDCPA_MSGBYTES ]) {

2 unsigned int i,j;

3 int16_t mask;

4 for(i=0;i<KYBER_N /8;i++) {

5 for(j=0;j<8;j++) {

6 mask = -(int16_t)((msg[i] >> j) & 1);

7 r->coeffs [8*i+j] = mask & (( KYBER_Q +1) /2);

8 }

9 }

10 }

Listing 1: CRYSTALS-Kyber – Message Encoding [2]

The two values of the mask have the maximum possible Hamming distance of
16, i.e. all bit positions differ. We assume that this leads to a distinguishable
difference in the amount of power consumption when processing the mask, and
thus allows for extracting information on the actual secret message as for each
bit of msg the value of the mask is evaluated again.

4.2 Message Encoding With Multiplication

Amiet et al. [1] presented an approach to make the attack more difficult by
reducing the Hamming distance between the two possible values of the mask. To
encode a message, the coefficients of the polynomial are calculated by multiplying
the message bit and (KYBER_Q+1)/2. Hence, line 6 and 7 in Listing 1 are replaced
by Listing 2. The two possible values for the mask are 0 and 1 reducing the
maximum possible Hamming distance from 16 to one.

6 mask = ((msg[i] >> j) & 1);

7 r->coeffs [8*i+j] = mask *(( KYBER_Q +1) /2);

Listing 2: CRYSTALS-Kyber – Message Encoding with multiplication [1]

Decreasing the Hamming distance should result in reduction of the observed
leakage, however, an SPA, as described in [1], might still be applicable.

4.3 Message Encoding Using Data Independent Polynomial
Generation

To counteract vulnerabilities still present in the previous implementation, we
first remove the mask evaluation as it may leak information about the message
bit during its storing and loading instructions. Furthermore, information leakage
is reduced by generating polynomials in a data independent fashion: additionally
to the already provided r, we define a second polynomial r_d which is discarded
after the message encoding. We first initialize all coefficients of r and r_d to the
constant (KYBER_Q+1)/2. Afterwards, each time a single bit of msg is processed,
one coefficient of one of the polynomials is set to zero. If the extracted message
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bit is zero, the coefficient of the real polynomial r is altered, otherwise the co-
efficient of the dummy polynomial r_d is altered. The reference implementation
is modified by replacing all lines from line 3 onwards in Listing 1 by Listing 3.

3 poly r_d;

4 poly *p_r [2] = {r, &r_d};

5 for(i=0;i<KYBER_N;i++) {

6 r->coeffs[i] = (KYBER_Q +1) /2;

7 r_d.coeffs[i] = (KYBER_Q +1) /2;

8 }

9 for(i=0;i<KYBER_N /8;i++) {

10 for(j=0;j<8;j++) {

11 p_r[(msg[i] << (7-j)) >> 7]->coeffs [8*i+j] = 0;

12 }

13 }

Listing 3: CRYSTALS-Kyber – Message Encoding using data independent
polynomial generation

In contrast to the previous implementations, information leakage should be re-
duced significantly as the very same operation of setting a polynomial to zero is
performed each time independently of the processed value. Remaining leakage
could still be caused by determining which polynomial should be used, based on
the currently evaluated bit of msg.

4.4 Message Encoding Using Data Independent Polynomial
Generation With Balanced Byte Look-Up

We extend the previously introduced approach by balancing the look-ups of the
polynomials by covering the extracted message bits with alternating masks. To
do so, we initialize a pointer array p_r of size 256 alternately containing both
polynomials. Furthermore, we define two mask values with identical Hamming
weight for later balancing of the look-ups. Line 4 of Listing 3 is replaced by
Listing 4. We remark that the code presented in Listing 4 can be placed outside
the message encoding function.

4 poly *p_r [256];

5 uint32_t xorMasks [2] = {0xaaaaaaaa , 0x55555555 };

6 for(i=0;i <256;i+=2) {

7 p_r[i] = r;

8 p_r[i+1] = &r_d;

9 }

Listing 4: CRYSTALS-Kyber – Message Encoding using data independent
polynomial generation with balanced byte look-up – Initialization

While processing the bits of msg the index of p_r is calculated as an 8 bit value
with Hamming distance independent of the processed bits for each message byte.
This corresponds to replacing line 11 in Listing 3 with Listing 5.
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11 p_r[(( xorMasks[j & 1] ^ msg[i]) >> j) & 0xff]->

coeffs [8*i+j] = 0;

Listing 5: CRYSTALS-Kyber – Message Encoding using data independent
polynomial generation with balanced byte look-up – Balanced look-up

As a result, potential information leakage depending on the polynomial look-
ups should be reduced. Remaining leakage might be caused by the the data
dependency of the addressed polynomial as well as the evaluated message bit.

4.5 Message Encoding Using Polynomial Randomization

In this section, we present an additional measure to decrease leakage of the
polynomial processing. The strategy is to shift the pointer array p_r and the
balancing array xorMask by 0 or 1, depending on the most significant bit of the
first message byte (MSB). As the message msg is randomly chosen, evaluating the
MSB serves as a source of randomness without introducing an additional fetch
from a random number generator. To first extend the used arrays, we replace
line 4 of Listing 4 by Listing 6.

4 poly *p_r [256+1];

5 uint32_t xorMasks [3] = {0xaaaaaaaa ,0x55555555 ,0 xaaaaaaaa };

Listing 6: CRYSTALS-Kyber – Message Encoding using polynomial
randomization – Initialization

In order to randomly invert the polynomial look-ups, the arrays are shifted to
the left by adding Listing 7 after line 8 of Listing 3.

9 uint32_t b_inv = ((0 xaaaa00aa ^ msg [0]) >> 7) & 0xff;

10 for(i=0; i <255;i++) {

11 *(p_r+i) = *(p_r+i+b_inv);

12 }

13 for(i=0; i<2;i++) {

14 *( xorMasks+i) = *( xorMasks+i+b_inv);

15 }

Listing 7: CRYSTALS-Kyber – Message Encoding using polynomial
randomization – Inversion by shifting

Compared to the preceding implementation, information leakage should further
decrease. But again, processing the polynomials can still cause small differences
in the amount of power consumption. We furthermore remark that this imple-
mentation introduces a new data dependency based on the most significant bit
of the MSB.

4.6 Message Encoding Using Byte and Bit Level Random Ordering

We extend the previous approach by shuffling the order in which the bytes and
their bits are processed. Again, the MSB is used as a source of randomness. We
define two masking variables i_m, and j_m to shuffle the bytes and their bits.
Therefore, line 9 of Listing 7 is replaced by Listing 8.
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9 uint32_t rand = (0 xaaaa00aa ^ msg [0]);

10 uint8_t i_m = rand & 0x1f;

11 uint8_t j_m = (rand >> 5) & 0xff;

12 uint32_t b_inv = (rand >> 7) & 0xff;

Listing 8: CRYSTALS-Kyber – Byte and bit level random ordering –
Initialization

The shuffling variables i_m, and j_m are added to the loop counters i, and j,
respectively while iterating through the bytes and bits of msg by an exclusive-
or. Therefore, the order of the bytes is shuffled and the bits of each byte are
processed in the same but randomized order. For this, we replace line 9 onwards
in Listing 3 by Listing 9.

9 uint8_t i_r , j_r;

10 for(i=0;i<KYBER_N /8;i++){

11 i_r = i ^ i_m;

12 for(j=0;j<8;j++){

13 j_r = j ^ j_m;

14 p_r [(( xorMasks [(j_r & 1)] ^ msg[i_r]) >> j_r) & 0xff

]->coeffs [8*i_r+j_r] = 0;

15 }

16 }

Listing 9: CRYSTALS-Kyber – Byte and bit level random ordering – Shuffled
look-ups

Introducing this level of randomization should significantly reduce the observed
leakage. However, the masking variables in Listing 8 themselves become a target
of side-channel analysis, potentially requiring additional protection.

5 Experimental Results

This section presents our practical results of the side-channel analysis of Ky-
ber’s message encoding, targeting all implementations listed in Section 4.1 to
Section 4.6.

5.1 Measurement Setup

Figure 1 shows the setup targeting the Cortex-M4 processor (@120 MHz) on
the FRDM-K22F development board (rev. D) programmed with the MCUX-
presso software development kit (11.2.1) to prepare the board for our measure-
ments [24]. Hardware modifications are necessary – all capacitors between the
measuring point and the power pins of the Cortex-M4 have been removed – in
order not to degrade the power consumption signal. Power traces are recorded
utilizing a populated resistor with a Teledyne LeCroy AP033 active differential
probe attached to a Teledyne LeCroy HDO9404M. The horizontal resolution of
the oscilloscope is set to 0.1 ns, i.e. 10 GS/s sampling rate. A dedicated trigger
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(a) Teledyne LeCroy oscilloscope (b) FRDM-K22F development board

Fig. 1: Measurement setup

signal – a signal pulse framing the encoding – is utilized via a general purpose
pin. Thus, only minimal alignment (via cross-correlation) is needed.

5.2 Message Encoding According to Reference Implementation

First, the reference implementation according to [2] is targeted, involving pro-
cessing of a 16 bit mask for the encoding of each bit of the message. An exemplary
power trace as well as the analysis results are depicted in Figure 2.
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Fig. 2: Side-channel analysis of message encoding according to the reference im-
plementation [2]

Figure 2a depicts the power consumption while processing one byte. Whether
a 0 or a 1 is processed results in a clearly distinguishable pattern in the power
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trace allowing for extraction of the message msg by observation of a single trace
with the bare eye. Focusing on processing one bit only, Figure 2b shows the
mean traces for the two classes 0 and 1 for a total of 8,000 involved traces. The
red vertical line marks the sample for which the difference between the mean
traces reaches its maximum. For this sample, all traces are analyzed, resulting in
Figure 2c which depicts the means’ distributions which we assume to be Gaussian
for the two classes 0 and 1. Whereas the means are significantly distinguishable,
the variances are very close. Performing a t-test over the whole sample range,
with considered noise thresholds according to [9], Figure 2d is obtained. On top
of the t-test a single-trace SPA is performed which results in a success rate1

of 100.0 %. The available traces were halved for profiling as well as matching
and Points Of Interest (POI) were selected by Sum Of Squared pairwise T-
differences (SOST) [13].

5.3 Message Encoding With Multiplication

In order to reduce the Hamming distance of the processed internal values, the
calculation of the 16 bit mask is replaced by a multiplication operation according
to the approach suggested in [1] and outlined in Section 4.2. Each bit of the
message msg is multiplied with the constant (KYBER_Q+1)/2. Thus, the evaluated
mask is either equal to 0 or 1.
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Fig. 3: Side-channel analysis of message encoding with multiplicative mask

Figure 3a illustrates a single trace of the power consumption. Though the shape
of the trace changed in comparison to Figure 2a, significant differences can still

1 Proportion of correctly classified traces, i.e. rs = Correctly classified traces

Number of traces
.
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be observed for the two classes. Thus, a single-trace attack by observation with
the bare eye is still possible. The mean traces for processing 0 and 1 are shown
in Figure 2b. As for the reference implementation, a total of 8,000 traces is
analyzed. Figure 2c depicts the power distribution for the two classes 0 and
1 as extracted from the sample with the highest power consumption within
the timeframe marked by the red vertical lines in Figure 2b. Whilst the two
distributions move closer together and the variances are more distinguishable
compared to the reference implementation, the overlap is still negligible. This is
reflected in the t-test result, depicted in Figure 2d. The SPA success rate is still
100.0 %, despite reduction of Hamming distance by the multiplication approach.
Presumably due to the high horizontal oscilloscope resolution, the leakage is fully
exploitable leading to a flawless single-trace SPA.

5.4 Message Encoding Using Data Independent Polynomial
Generation

As leakage of the mask could be exploited even for a Hamming distance of only
one, an alternative approach is examined which does not require a mask (compare
Section 4.3). Instead, a dummy polynomial is used, and for each bitwise encoding
step, a coefficient of either the polynomial r or its dummy counterpart r_d is set
to zero. Pointers to the real and the dummy polynomial are stored in a pointer
array. Therefore, the same operation is performed for each encoding step. When
all bits have been processed, the dummy polynomial is discarded.
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Fig. 4: Side-channel analysis of message encoding with data independent poly-
nomial generation
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In contrast to the previous measurements, it is indistinguishable to the bare
eye whether a 0 or 1 is processed (compare Figure 4a). Figure 4b depicts the
mean traces for processing 0 and 1 with small differences in the mean power con-
sumption still identifiable for the two classes. Figure 4c depicts the distributions
of the measured power values for one selected sample for the two classes. The
distributions lie closer together and the overlap is strongly increased, however,
the variance of the two classes significantly differs. Figure 4d shows the corre-
sponding t-test result which still indicates information leakage. When an SPA is
conducted, the success rate noticeably drops to 68.6 % compared to the attacks
on the previous implementations.

5.5 Message Encoding Using Data Independent Polynomial
Generation with Balanced Byte Look-Up

Aiming at further reducing the remaining leakage, the look-ups of the polyno-
mials are balanced, meaning that the selection of whether an operation shall be
performed on the real or the dummy polynomial is done with the help of two
masking values with identical Hamming weight (compare Section 4.4).
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Fig. 5: Side-channel analysis of message encoding with data independent poly-
nomial generation with balanced byte look-up

The power trace depicted in Figure 5a cannot be interpreted by the bare eye
only. Comparing the average traces for both classes, subtle differences are still
visible (compare Figure 5b). This results in the two distributions depicted in
Figure 5c not fully overlapping and also differing in their variance. The t-test
as presented in Figure 5d accordingly yields results above the noise threshold.
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The conducted SPA results in a success rate of 67.9 %, nearly as high as the
unbalanced implementation shown in the previous section.

5.6 Message Encoding Using Polynomial Randomization

In order to introduce greater variance, the ordering of real and dummy poly-
nomials within the pointer array is randomized for each function call (compare
Section 4.5). Thereby, leakage caused by accessing the same index values over
and over again shall be reduced. However, the distributions in Figure 6c as well
as the t-test results in Figure 6d indicate that the leakage is only slightly reduced.
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Fig. 6: Side-channel analysis of message encoding with polynomial randomization

The conducted SPA still yields a success rate of 64.0 %.

5.7 Shuffled Message Encoding Using Byte and Bit Level Random
Ordering

The last investigated implementation shuffles the processed message bytes as well
as the order in which the bits of each byte are processed (compare Section 4.6).

In contrast to the previous tests the number of analyzed traces is increased
from 8,000 traces to 80,000 traces. To this end, Figure 7d shows the t-test result
for ten times more traces compared to the previous implementations. Analyzing
this larger trace set, the t-test yields results slightly above the noise threshold
for a very limited range of samples. When only 8,000 traces are included, the
t-test values remain below the noise barrier. The distributions for the two classes
as shown in Figure 7c are indistinguishable from each other.
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Fig. 7: Side-channel analysis of message encoding with byte and bit level random
ordering

Performing an SPA, the success rate reduces to 50.1 % which corresponds to
random guessing.

5.8 Comparison of Countermeasures

Table 1 summarizes our results of Section 5.2 to Section 5.7 for the applied t-tests
and SPA as well as the required number of clock cycles and the overhead with
respect to the reference implementation. Please recall that the implementation
with random byte and bit level ordering has been analyzed with a higher number
of involved traces compared to all other implementations (80,000 compared to
8,000 traces).

Table 1: Comparison of Implementations
t-test SPA clock cycles

Implementation tmax # POI success
rate (overhead)

Reference implementation [2] 437 1,535 100.0 % 11,732

Multiplication [1] 177 796 100.0 % 12,500 (1.09×)

Data independent polynomial gen. 24.8 525 68.6 % 16,066 (1.42×)

Balanced data independent polynomial gen. 19.6 700 67.9 % 19,425 (1.66×)

Polynomial randomization 13.8 1,231 64.0 % 26,893 (2.29×)

Byte and bit level random ordering 5.2 1,755 50.1 % 29,211 (2.49×)

POIs are selected by means of SOST. The selection of POIs for the SPA is
conducted in such a way that only samples are included for which the SOST value
reaches at least 20 % of the maximum SOST value. A high number of selected
POIs therefore corresponds to either an implementation which can be easily
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attacked (please refer to the row regarding the reference implementation) or an
implementation for which nearly all measured sample points are independent of
the processed data (please refer to the row regarding the implementation with
random ordering). In the latter case many sample points lie above the threshold
of 20 % due to the fact that the maximum SOST value itself is low.

Comparing the maximum absolute t-test values tmax with the SPA success
rates, it can be observed that both indicators are reduced for successively added
countermeasures. For the last implementation, the t-test values only slightly ex-
ceed the noise barrier and the SPA success rate reaches 50.1 % which corresponds
to random guessing.

6 Conclusion

Achieving resistance against side-channel analysis is crucial for PQC implemen-
tations to make PQC schemes suitable replacement candidates for currently used
asymmetric cryptographic schemes. In this work, we examined various counter-
measures for the CRYSTALS-Kyber message encoding step on an ARM Cortex-
M4. For a total of six different implementations, we performed a side-channel
analysis targeting the power domain. The amount of leakage is classified using
a t-test, then, an SPA is conducted targeting the processing of individual bits.

Masking only is a suitable countermeasure if the success rate for an SPA
is lower than 100 %. However, for the first two examined implementations, the
value of the processed bit can be read from the power trace with the bare eye.
Processing this value in a number of shares would not improve side-channel
resistance as the shares could be attacked with the same success rate leading to
full recovery of the message.

The Cortex-M4 shows significant leakage even for already protected imple-
mentations, e.g. accessing a dummy in comparison to the real polynomial still
results in exploitable leakage, which leads us to the conclusion that it is a chal-
lenging task to implement an algorithm in a side-channel secured fashion on
this hardware. The most promising countermeasure which we could identify is
full randomization of the order of the processed bits. It is therefore considered
beneficial to introduce randomization countermeasures even on top of masked
implementations.

The message decoding function is the inverse operation of the examined mes-
sage encoding. In order to apply the presented randomization approach to the
decoding step, however, one byte has to be decoded first to serve as the source
of randomness. To minimize leakage at this point in time, the independent poly-
nomial generation countermeasure could be applied.

Furthermore, the same message is encoded twice, first by the initiator and
then by the responder during the re-encryption. In combination with the decod-
ing step, the very same message could be attacked up to three times. However,
choosing different but static randomization bytes prevents such an attack.

When a randomization approach is selected, fetching and processing ran-
dom numbers becomes a suitable target for side-channel analysis and has to be
implemented in a side-channel secure fashion as well.
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tacking and Defending Masked Polynomial Comparison for Lattice-Based Cryp-
tography. Cryptology ePrint Archive, Report 2021/104 (2021)

6. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
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