
Identify 0-coefficients of masking vector 𝑦

Sign(sk, M)

𝐲 ← S𝛾1−1
ℓ

w1 = HighBits 𝐴𝑦, 2 𝛾2
c ∈ 𝐵𝑟 ≔ H 𝑀 | 𝑤1

𝐳 ≔ 𝑦 + 𝑐 𝑠1
return 𝜎 = (𝐳, c)

Universal Forgery Attack on Dilithium
Leveraging Power Side Channels

Vincent Ulitzsch<v.ulitzsch@campus.tu-berlin.de>1, Soundes Marzougui1, Mehdi Tibouchi2, Jean-Pierre Seifert1

1 Technical University of Berlin, Germany
2 NTT Corporation, Tokyo, Japan

Profiling Attack: Machine learning flow

For each predicted coefficient, we obtain a linear
relationship through observing that z i,j = cs1 i,j +

y i,j where y i,j is assumed to be zero. This will be

true for most of the coefficients (assuming most of
our classifications are correct). We insert the row
z i,j = cs1 i,j in our equation system.

max෍

l

xl

subject to
- Zl − Cls ≤ M ⋅ 1 − xl ∀ l ∈ 1,… , L

Zl − Cls ≥ −M ⋅ 1 − xl ∀ l ∈ 1,… , L
xl ∈ 0,1 ∀ l ∈ 1,… , L
𝑠𝑖 ∈ −2,… , 2 ∀𝑖 ∈ {1, … , 𝑛}

Z = C s1 + e

where for each prediction that in signature
m, y i,j

m = 0, we set Zl = z i,j
m and derive Cl

from cm, the current challenge vector. If , y i,j
m is

indeed zero, the relationship holds, otherwise
the relationship holds up to some error.

𝑦𝑖,𝑗 =

0?

Add z = cs1to equation system Extract secret key by maximizing number
of fulfilled equations via integer linear
programming

We solve ℓ separate integer linear programs, one for
each polynomial in s1. Each ILP finds a secret key
polynomial s such that the number of fulfilled
equations is maximized. Assuming most of our
classifications are correct (Zl = Cls1), this will exactly
match the secret key polynomial s.

A power consumption side channel gives us
information about which coefficients of the
masking vector y are 0. After a profiling phase
we achieve a true positive rate 98% and true
negative rate of around 99.8%, using
hyperparameter optimization [2] on the ARM
Cortex M4.

References
[1] Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., & Stehlé,
D. (2018). Crystals–dilithium: Digital signatures from module lattices.
[2] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A.
(2017). Hyperband: A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research, 18(1), 6765-6816.
[3] Migliore, V., Gérard, B., Tibouchi, M., & Fouque, P. A. (2019, June).
Masking dilithium. In International Conference on Applied Cryptography
and Network Security (pp. 344-362). Springer, Cham.

▪ The masking vector y is generated via
unpacking a bit-string expanded from a seed
ρ′, 𝐲 = unpack(expand(𝜌′))

▪ Power measurements reveal whether the
unpacked coefficients are zero or non-zero

Dilithium is lattice-based fiat-shamir with aborts signature scheme [1]

Private key: 𝐬1, 𝐬2 ∈ Rq
l × Rq

k , where Rq = Zq X /(Xn + 1) and coefficients are small

Public key: 𝐀, 𝐭 , 𝐭 = 𝐀𝐬1 + 𝐬2, where A is sampled uniformly at random from R𝑞
ℓ×𝑘

Signature: 𝑧 = 𝐲 + 𝑐𝑠1

𝑐 is a challenge polynomial derived from
the message to be signed. c’s coefficients
are in 0,+1,−1

𝐲 ∈ R𝑞
𝑙 is a masking vector of polynomials,

generated at random. y’s coefficients are in
{−𝛾1,… , 𝛾1}.

In the reference implementation, the generation of the
masking vector leaks information via power consumption

Using deep neural networks on power traces, we can
detect for coefficient 𝑗 of polynomial 𝑖 whether

𝐲 𝒊,𝒋 = 𝟎

Knowing information about 𝐲 from the power leak we can
recover the secret key polynomial of 𝒔𝟏 with integer linear
programming

The knowledge of 𝐬1 is sufficient to perform universal forgery.

Power traces leak masking vector 𝒚 Profiling Attack: Machine learning flow

Dilithium, a NIST Post-Quantum Cryptography Candidate Attack Idea

2

Recovering the secret key through Integer Linear Programming

Assessing the resilience of the Dillithium reference implementation against
power side-channel analysis on an ARM Cortex M4.

Research
Question

We were able to break Dilithium NIST Security Level 2 via profiling power-
side channel using around 750000 signatures on an ARM Cortex M4.

Research
Result

Apply masking [3], by splitting each coefficient in y into shares y = y1 + y2 +
⋯+ ynmod q

Counter-
measure

1 3

Record traces with known keys and messages
on attacker-controlled device

Collect training data in form of labelled
power traces2

Train a DNN to distinguish between zero and
non-zero coefficients

Record traces with unknown keys and
random message on device under attack

Classify traces with trained model and detect
0-coefficients in masking vector

3

4

5

Dilithium reference implementation

Known key (different per execution)

Unknown Secret key

ARM Cortex M4 target device

Power traces
Power trace

0-coefficients of masking vector 𝑦

2

3 4

5

1 1

