

Universal Forgery Attack on Dilithium Leveraging Power Side Channels

Vincent Ulitzsch<v.ulitzsch@campus.tu-berlin.de>1, Soundes Marzougui1, Mehdi Tibouchi2, Jean-Pierre Seifert1 ¹ Technical University of Berlin, Germany ² NTT Corporation, Tokyo, Japan

Dilithium, a NIST Post-Quantum Cryptography Candidate

Dilithium is lattice-based fiat-shamir with aborts signature scheme [1] Private key: $\mathbf{s}_1, \mathbf{s}_2 \in \mathbf{R}_q^l \times \mathbf{R}_q^k$, where $\mathbf{R}_q = \mathbf{Z}_q[X]/(X^n + 1)$ and coefficients are small Public key: (**A**, **t**), $\mathbf{t} = \mathbf{A}\mathbf{s}_1 + \mathbf{s}_2$, where **A** is sampled uniformly at random from $\mathbf{R}_a^{\ell \times k}$

Signature: $z = y + cs_1$

 $\mathbf{y} \in \mathbb{R}_q^l$ is a masking vector of polynomials, generated at random. y's coefficients are in $\{-\gamma_1,\ldots,\gamma_1\}.$

c is a challenge polynomial derived from the message to be signed. c's coefficients are in $\{0, +1, -1\}$

Research Question

Assessing the resilience of the Dillithium reference implementation against power side-channel analysis on an ARM Cortex M4.

Attack Idea

In the reference implementation, the generation of the masking vector leaks information via power consumption

Using deep neural networks on power traces, we can **detect for** coefficient j of polynomial i whether

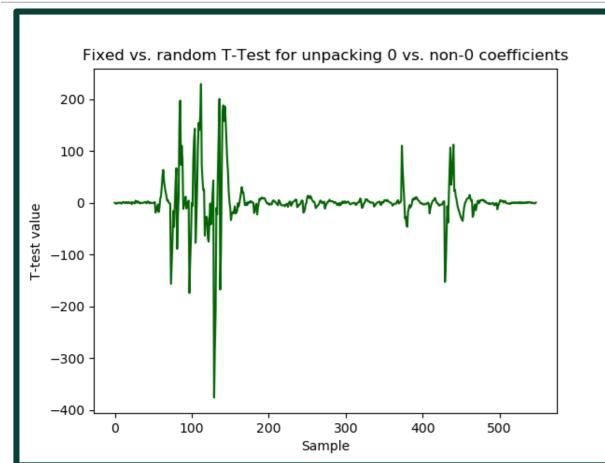
 $\mathbf{y}_{\{i,j\}}=\mathbf{0}$

Knowing information about **y** from the power leak we can recover the secret key polynomial of s_1 with integer linear programming

The knowledge of s_1 is sufficient to perform universal forgery.

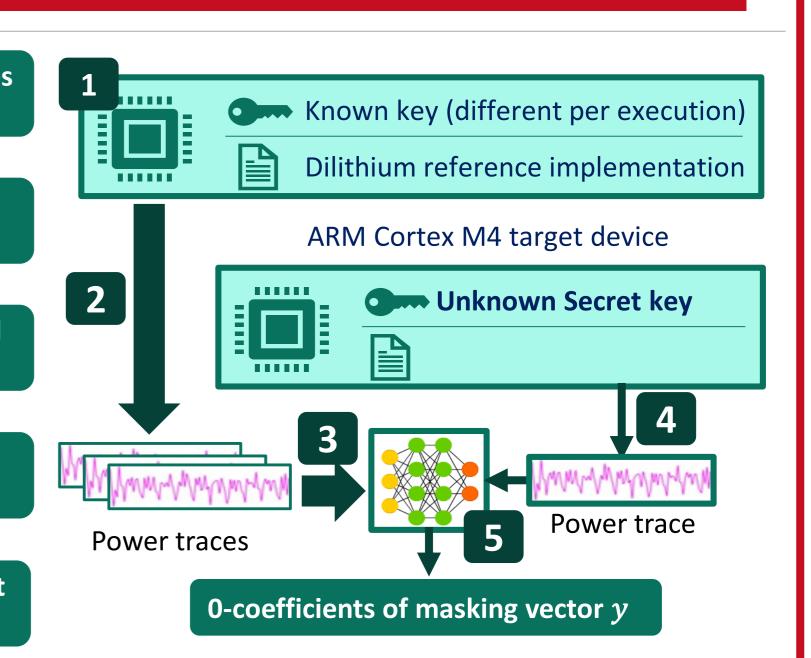
Power traces leak masking vector y

Profiling Attack: Machine learning flow



- The masking vector y is generated via unpacking a bit-string expanded from a seed ρ' , $\mathbf{y} = \text{unpack}(\text{expand}(\rho'))$
- Power measurements reveal whether the unpacked coefficients are zero or non-zero

- Record traces with known keys and messages on attacker-controlled device
- Collect training data in form of labelled power traces
- Train a DNN to distinguish between zero and non-zero coefficients
- Record traces with unknown keys and random message on device under attack
- Classify traces with trained model and detect **0-coefficients in masking vector**



Recovering the secret key through Integer Linear Programming

Identify 0-coefficients of masking vector y

Sign(sk, M)

$$\mathbf{y} \leftarrow \mathbf{S}_{\gamma_1 - 1}^{\ell} \qquad \qquad \mathbf{y}_{i,j} = 0$$

 $w_1 = HighBits(Ay, 2 \gamma_2)$ $c \in B_r := H(M \mid w_1)$

 $\mathbf{z} \coloneqq y + c \, s_1$

return $\sigma = (\mathbf{z}, \mathbf{c})$

A power consumption side channel gives us information about which coefficients of the masking vector y are 0. After a profiling phase we achieve a true positive rate 98% and true negative rate of around 99.8%, using hyperparameter optimization [2] on the ARM

Add $z = cs_1$ to equation system

 $Z = C s_1 + e$

where for each prediction that in signature $m, y_{\{i,j\}}^m = 0$, we set $Z_l = z_{\{i,j\}}^m$ and derive C_l from c_m , the current challenge vector. If , $y_{\{i,i\}}^m$ is indeed zero, the relationship holds, otherwise the relationship holds up to some error.

For each predicted coefficient, we obtain a linear relationship through observing that $z_{\{i,j\}} = (cs_1)_{\{i,j\}} +$ $y_{\{i,j\}}$ where $y_{\{i,j\}}$ is assumed to be zero. This will be true for most of the coefficients (assuming most of our classifications are correct). We insert the row $z_{\{i,j\}} = (cs_1)_{\{i,j\}}$ in our equation system.

Extract secret key by maximizing number of fulfilled equations via integer linear programming

 $Z_l - C_l s \le M \cdot (1 - x_l) \forall l \in \{1, ..., |L|\}$ $Z_l - C_l s \ge -M \cdot (1 - x_l) \forall l \in \{1, ..., |L|\}$ $x_l \in \{0,1\} \forall l \in \{1, ..., |L|\}$ $s_i \in \{-2, ..., 2\} \forall i \in \{1, ..., n\}$

We solve ℓ separate integer linear programs, one for each polynomial in s_1 . Each ILP finds a secret key polynomial s such that the number of fulfilled equations is maximized. Assuming most of our classifications are correct ($Z_l = C_l s_1$), this will exactly match the secret key polynomial s.

Research Result

Cortex M4.

We were able to break Dilithium NIST Security Level 2 via profiling powerside channel using around 750000 signatures on an ARM Cortex M4.

Countermeasure Apply masking [3], by splitting each coefficient in y into shares $y = y_1 + y_2 + y_3 + y_4 + y_5 + y_6 +$ $\cdots + y_n \mod q$

References

[1] Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., & Stehlé, D. (2018). Crystals-dilithium: Digital signatures from module lattices. [2] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2017). Hyperband: A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning Research, 18(1), 6765-6816. [3] Migliore, V., Gérard, B., Tibouchi, M., & Fouque, P. A. (2019, June). Masking dilithium. In International Conference on Applied Cryptography and Network Security (pp. 344-362). Springer, Cham.